Helicity analysis of the decays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to K^* \ell^+ \ell^-$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to \rho \ell \nu_\ell$\end{document} in the large energy effective theory

被引:0
作者
A. Ali
A.S. Safir
机构
[1] Deutsches Elektronen-Synchrotron DESY,
[2] 22603 Hamburg,undefined
[3] Germany ,undefined
关键词
Invariant Mass; Helicity Amplitude; Decay Amplitude; Dilepton Invariant Mass; Rule Approach;
D O I
10.1140/epjc/s2002-01040-3
中图分类号
学科分类号
摘要
We calculate the independent helicity amplitudes in the decays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to K^* \ell^+ \ell^-$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to \rho \ell \nu_\ell$\end{document} in the so-called Large-Energy-Effective-Theory (LEET). Taking into account the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\alpha_s)$\end{document} and SU(3) symmetry-breaking effects, we calculate various Dalitz distributions in these decays making use of the presently available data and decay form factors calculated in the QCD sum rule approach. Differential decay rates in the dilepton invariant mass and the Forward-Backward asymmetry in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to K^* \ell^+ \ell^-$\end{document} are worked out. We also present the decay amplitudes in the transversity basis which has been used in the analysis of data on the resonant decay \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B \to K^* J/\psi (\to \ell^+ \ell^-)$\end{document}. Measurements of the ratios \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R_i(s) \equiv d \Gamma_{H_i}(s)(B \to K^* \ell^+ \ell^-)/ d \Gamma_{H_i}(s)(B \to \rho \ell \nu_\ell)$\end{document}, involving the helicity amplitudes Hi(s), i=0,+1, -1, as precision tests of the standard model in semileptonic rare B-decays are emphasized. We argue that R0(s) and R-(s) can be used to determine the CKM ratio \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\vert V_{ub}\vert/\vert V_{ts} \vert$\end{document} and search for new physics, where the later is illustrated by supersymmetry.
引用
收藏
页码:583 / 601
页数:18
相关论文
empty
未找到相关数据