Existence of Positive Solutions for a Class of Critical Fractional Schrödinger Equations with Potential Vanishing at Infinity

被引:1
作者
Quanqing Li
Kaimin Teng
Xian Wu
机构
[1] Honghe University,Department of Mathematics
[2] Taiyuan University of Technology,Department of Mathematics
[3] Yunnan Normal University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Fractional Schrödinger equation; Quasicritical growth; Variational method; 35J20; 35J70; 35P05; 35P30; 34B15; 58E05; 47H04;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the following critical fractional Schrödinger equation (-Δ)su+V(x)u=|u|2s∗-2u+λK(x)f(u),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^su+V(x)u=|u|^{2_s^*-2}u+\lambda K(x)f(u), \ x \in \mathbb {R}^N, \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document} denotes the fractional Laplacian of order s, V,K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V, \ K$$\end{document} are nonnegative continuous functions satisfying some conditions and f is a continuous function, N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document} and 2s∗=2NN-2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2_s^*=\frac{2N}{N-2s}$$\end{document}. We prove that the equation has a positive solution for large λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} by the variational method.
引用
收藏
相关论文
共 32 条
  • [1] Aires JFL(2014)Existence of solutions for a quasilinear Schrödinger equation with vanishing potentials J. Math. Anal. Appl. 416 924-946
  • [2] Souto MAS(2013)Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity J. Differ. Equ. 254 1977-1991
  • [3] Alves CO(2005)Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity J. Eur. Math. Soc. (JEMS) 7 117-144
  • [4] Souto MAS(2005)Nonlinear Schrödinger equations with vanishing and decaying potentials Differ. Integr. Equ. 18 1321-1332
  • [5] Ambrosetti A(1983)Nonlinear scalar field equations, I: existence of a ground state Arch. Rat. Mech. Anal. 82 313-346
  • [6] Felli V(2010)Ground states for nonlinear Schrödinger equation with potential vanishing at infinity Ann. Math. Pura Appl. 189 273-301
  • [7] Malchiodi A(2012)Bound state for the fractional Schrödinger equation with unbounded potential J. Math. Phys. 53 043507-494
  • [8] Ambrosetti A(2013)Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity Nonlinearity 26 479-573
  • [9] Wang ZQ(2012)Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 521-216
  • [10] Berestycki H(2013)Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian Matematiche (Catania) 68 201-1262