Continuous Projection Generalized Extra-Gradient Quasi-Newton Second-Order Method for Solving Saddle Point Problems

被引:0
|
作者
V. G. Malinov
机构
[1] Ulyanovsk State University,
来源
Computational Mathematics and Mathematical Physics | 2022年 / 62卷
关键词
convex-concave function; saddle point problem; continuous projection generalized extra-gradient quasi-Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:753 / 765
页数:12
相关论文
共 50 条
  • [21] A generalized projection quasi‐Newton method for nonlinear optimization problems
    Y. Lai
    Z. Gao
    G. He
    Annals of Operations Research, 1999, 87 : 353 - 362
  • [22] MODIFICATION OF THE EXTRA-GRADIENT METHOD FOR SOLVING VARIATIONAL-INEQUALITIES AND CERTAIN OPTIMIZATION PROBLEMS
    KHOBOTOV, EN
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (9-10): : 120 - 127
  • [23] GENERALIZED REDUCED GRADIENT PERFORMANCE WITH QUASI-NEWTON METHOD FOR NONLINEAR-PROGRAMMING
    ABADIE, J
    HAGGAG, A
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1979, 13 (02): : 209 - 216
  • [24] On generalized stationary iterative method for solving the saddle point problems
    Miao S.-X.
    Wang K.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 459 - 468
  • [25] A SMOOTHING NEWTON METHOD FOR GENERALIZED NASH EQUILIBRIUM PROBLEMS WITH SECOND-ORDER CONE CONSTRAINTS
    Yuan, Yanhong
    Zhang, Hongwei
    Zhang, Liwei
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (01): : 1 - 18
  • [26] On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems
    Forsgren, Anders
    Odland, Tove
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (02) : 377 - 392
  • [27] On the connection between the conjugate gradient method and quasi-Newton methods on quadratic problems
    Anders Forsgren
    Tove Odland
    Computational Optimization and Applications, 2015, 60 : 377 - 392
  • [28] On the restrictively preconditioned conjugate gradient method for solving saddle point problems
    Peng, Xiao-Fei
    Li, Wen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (01) : 142 - 159
  • [29] An adaptive model order reduction with Quasi-Newton method for nonlinear dynamical problems
    Nigro, P. S. B.
    Anndif, M.
    Teixeira, Y.
    Pimenta, P. M.
    Wriggers, P.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 106 (09) : 740 - 759
  • [30] Sequential Gradient Descent and Quasi-Newton's Method for Change-Point Analysis
    Zhang, Xianyang
    Dawn, Trisha
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206