The total {k}-domatic number of wheels and complete graphs

被引:0
|
作者
Jing Chen
Xinmin Hou
Ning Li
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
关键词
Total {; }-dominating function; Total {; }-dominating family; Total {; }-domatic number; Wheels; Complete graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a positive integer and let G be a graph with vertex set V(G). The total {k}-dominating function (T{k}DF) of a graph G is a function f from V(G) to the set {0,1,2,…,k}, such that for each vertex v∈V(G), the sum of the values of all its neighbors assigned by f is at least k. A set {f1,f2,…,fd} of pairwise different T{k}DFs of G with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i=1}^{d}f_{i}(v)\leq k$\end{document} for each v∈V(G), is called a total {k}-dominating family (T{k}D family) of G. The total {k}-domatic number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{t}^{\{k\}}(G)$\end{document}, is the maximum number of functions in a T{k}D family. In this paper, we determine the exact values of the total {k}-domatic numbers of wheels and complete graphs, which answers an open problem of Sheikholeslami and Volkmann (J. Comb. Optim., 2010) and completes a result in the same paper.
引用
收藏
页码:162 / 175
页数:13
相关论文
共 50 条