The total {k}-domatic number of wheels and complete graphs

被引:0
|
作者
Jing Chen
Xinmin Hou
Ning Li
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
关键词
Total {; }-dominating function; Total {; }-dominating family; Total {; }-domatic number; Wheels; Complete graphs;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a positive integer and let G be a graph with vertex set V(G). The total {k}-dominating function (T{k}DF) of a graph G is a function f from V(G) to the set {0,1,2,…,k}, such that for each vertex v∈V(G), the sum of the values of all its neighbors assigned by f is at least k. A set {f1,f2,…,fd} of pairwise different T{k}DFs of G with the property that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i=1}^{d}f_{i}(v)\leq k$\end{document} for each v∈V(G), is called a total {k}-dominating family (T{k}D family) of G. The total {k}-domatic number of a graph G, denoted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{t}^{\{k\}}(G)$\end{document}, is the maximum number of functions in a T{k}D family. In this paper, we determine the exact values of the total {k}-domatic numbers of wheels and complete graphs, which answers an open problem of Sheikholeslami and Volkmann (J. Comb. Optim., 2010) and completes a result in the same paper.
引用
收藏
页码:162 / 175
页数:13
相关论文
共 50 条
  • [1] The total {k}-domatic number of wheels and complete graphs
    Chen, Jing
    Hou, Xinmin
    Li, Ning
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 162 - 175
  • [2] On the Total {k}-Domination and Total {k}-Domatic Number of Graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 39 - 47
  • [3] On the {k}-domatic number of graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    UTILITAS MATHEMATICA, 2016, 100 : 309 - 322
  • [4] UPPER BOUNDS ON THE SIGNED TOTAL (k, k)-DOMATIC NUMBER OF GRAPHS
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (04) : 641 - 650
  • [5] ON THE TOTAL DOMATIC NUMBER OF REGULAR GRAPHS
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    TRANSACTIONS ON COMBINATORICS, 2012, 1 (01) : 45 - 51
  • [6] Total Italian domatic number of graphs
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2023, 31 (01) : 169 - 182
  • [7] The total {k}-domatic number of a graph
    S. M. Sheikholeslami
    L. Volkmann
    Journal of Combinatorial Optimization, 2012, 23 : 252 - 260
  • [8] THE TOTAL {k}-DOMATIC NUMBER OF DIGRAPHS
    Sheikholeslami, Seyed Mahmoud
    Volkmann, Lutz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 461 - 471
  • [9] The total {k}-domatic number of a graph
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (02) : 252 - 260
  • [10] Upper bounds on the signed total domatic number of graphs
    Volkmann, Lutz
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (08) : 832 - 837