The study of coefficient estimates and Fekete–Szegö inequalities for the new classes of m-fold symmetric bi-univalent functions defined using an operator

被引:0
|
作者
Daniel Breaz
Luminiţa-Ioana Cotîrlă
机构
[1] 1 Decembrie 1918 University,Department of Mathematics
[2] Technical University of Cluj-Napoca,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2023卷
关键词
Analytic functions; Bi-univalent functions; Fekete–Szegö functional; m-fold symmetric; Coefficient estimates; Coefficient bounds; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this paper is to introduce new classes of m-fold symmetric bi-univalent functions. We discuss estimates on the Taylor–Maclaurin coefficients |am+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{m+1}|$\end{document} and |a2m+1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$|a_{2m+1}|$\end{document}, and the Fekete–Szegő problem is also considered for the new classes of functions introduced. We denote these classes by MF−SΣ,mp,q(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma ,m}^{p,q}(h)$\end{document}, MF−SΣ,mp,q(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{p,q}(s)$\end{document}, and MF−SΣ,mb,d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$MF-S_{\Sigma , m}^{b,d}$\end{document}. Quantum calculus aspects are also considered in this study to enhance its novelty and to obtain more interesting results.
引用
收藏
相关论文
共 50 条
  • [41] Coefficient Estimates for Several Classes of Meromorphically Bi-Univalent Functions
    Dong GUO
    Zongtao LI
    Liangpeng XIONG
    JournalofMathematicalResearchwithApplications, 2018, 38 (06) : 597 - 608
  • [42] Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p, q) -derivative operator
    Altinkaya, Sahsene
    Yalcin, Sibel
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 3067 - 3074
  • [43] COEFFICIENT ESTIMATES FOR NEW SUBCLASSES OF MEROMORPHIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH LINEAR OPERATOR
    Alamoush, Adnan Ghazy
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2022, 12 (01): : 260 - 267
  • [44] Fekete–Szegö problem for certain classes of Ma-Minda bi-univalent functions
    Orhan H.
    Magesh N.
    Balaji V.K.
    Afrika Matematika, 2016, 27 (5-6) : 889 - 897
  • [45] Coefficient Bounds and Fekete-Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials
    Almalki, Yahya
    Wanas, Abbas Kareem
    Shaba, Timilehin Gideon
    Lupas, Alina Alb
    Abdalla, Mohamed
    AXIOMS, 2023, 12 (11)
  • [46] COEFFICIENT ESTIMATES FOR A NEW SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION
    Bulut, Serap
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 101 - 110
  • [47] Coefficient Bounds for a Family of s-Fold Symmetric Bi-Univalent Functions
    Al-shbeil, Isra
    Khan, Nazar
    Tchier, Fairouz
    Xin, Qin
    Malik, Sarfraz Nawaz
    Khan, Shahid
    AXIOMS, 2023, 12 (04)
  • [48] Coefficient Estimates for a Subclass of Bi-univalent Functions Defined by Salagean Type q-Calculus Operator
    Kamble, Prakash Namdeo
    Shrigan, Mallikarjun Gurullingappa
    KYUNGPOOK MATHEMATICAL JOURNAL, 2018, 58 (04): : 677 - 688
  • [49] Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator
    Srivastava, Hari M.
    Motamednezhad, Ahmad
    Adegani, Ebrahim Analouei
    MATHEMATICS, 2020, 8 (02)
  • [50] Coefficient inequalities for new subclasses of bi-univalent functions defined by using the function fδ
    Sagsoz, Fatma
    Orhan, Halit
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)