On local frequencies related to farey fractions

被引:0
|
作者
Stakenas V. [1 ]
机构
[1] Vilnius University, 2600, Vilnius
关键词
Farey series; Local frequencies; Multiplicative functions;
D O I
10.1007/BF02465128
中图分类号
学科分类号
摘要
Let P1 and P2 be two sets of prime numbers and let ω(m, Pi) = #{p: p | m, p ∈ Pi} (i = 1, 2) be two related additive functions of m. For an irreducible positive fraction m/n, define h(m/n) = ω(m, P1) + ω(n, P2). In this paper the local frequencies vx{h(m/n) = s} = #{m/n ∈ F x: h(m/n) = s}/#Fx are considered, where Fx denotes the classical Farey series. Using the mean-value theorem for multiplicative functions of rational argument, a local limit theorem for v x{h(m/n) = s} is proved. © 2000 Kluwer Academic/Plenum Publishers.
引用
收藏
页码:89 / 103
页数:14
相关论文
共 2 条
  • [1] Some sums involving Farey fractions II
    Kanemitsu, S
    Kuzumaki, T
    Yoshimoto, M
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (04) : 915 - 947
  • [2] High-resolution SAR interferometry: Estimation of local frequencies in the context of alpine glaciers
    Vasile, Gabriel
    Trouve, Emmanuel
    Petillot, Ivan
    Bolon, Philippe
    Nicolas, Jean-Marie
    Gay, Michel
    Chanussot, Jocelyn
    Landes, Tania
    Grussenmeyer, Pierre
    Buzlioiu, Vasile
    Hajnsek, Irena
    Andres, Christian
    Keller, Martin
    Horn, Ralf
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (04): : 1079 - 1090