A Regularization of Quantum Field Hamiltonians with the Aid of p–adic Numbers

被引:0
作者
Sergio Albeverio
Andrew Khrennikov
机构
[1] Bochum University,Mathematical Institute
来源
Acta Applicandae Mathematica | 1998年 / 50卷
关键词
p-adic Hilbert space; quantization; infinite-dimensional differential operators; Gaussian distributions; quantum field Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
Gaussian distributions on infinite-dimensional p-adic spaces are introduced and the corresponding L2-spaces of p-adic-valued square integrable functions are constructed. Representations of the infinite-dimensional Weyl group are realized in p-adic L2-spaces. There is a formal analogy with the usual Segal representation. But there is also a large topological difference: parameters of the p-adic infinite-dimensional Weyl group are defined only on some balls (these balls are additive subgroups). p-adic Hilbert space representations of quantum Hamiltonians for systems with an infinite number of degrees of freedom are constructed. Many Hamiltonians with potentials which are too singular to exist as functions over reals are realized as bounded symmetric operators in L2-spaces with respect to a p-adic Gaussian distribution.
引用
收藏
页码:225 / 251
页数:26
相关论文
共 46 条
[1]  
Snyder H. S.(1947)Quantized space-time Phys. Rev. 7 38-220
[2]  
Schild A.(1948)Discrete space-time and integral Lorentz transformations Phys. Rev. 73 414-7
[3]  
Hellund E. J.(1954)Quantized space-time Phys. Rev. 94 192-L87
[4]  
Tanaka K.(1995)The quantum structure of space-time at the Planck scale and quantum fields Comm. Math. Phys. 172 187-190
[5]  
Doplicher S.(1972)Quantum mechanics and Found. Phys. 2 1-195
[6]  
Fredenhagen K.(1987)-adic numbers Classical Quantum Gravity 4 L83-514
[7]  
Roberts J. E.(1987)-adic string Phys. Lett. B 199 186-4358
[8]  
Beltrametti E.(1987)Non-Archimedean strings Phys. Lett. B 199 191-22
[9]  
Cassinelli G.(1988)Adelic string amplitudes Phys. Lett. B. 200 512-223
[10]  
Volovich I. V.(1991)On the p-adic summability of the anharmonic oscillator Internat. J. Modern Phys. A 6 4341-1228