Numerical method with high order accuracy for solving a anomalous subdiffusion equation

被引:0
作者
Y. Chen
Chang-Ming Chen
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Numerical Algorithms | 2016年 / 72卷
关键词
Anomalous subdiffusion equation; Numerical method with high order accuracy; Convergence; Stability; Solvability; Fourier analysis; 26A33; 65M06; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a numerical method with second order temporal accuracy and fourth order spatial accuracy is developed to solve a anomalous subdiffusion equation; by Fourier analysis, the convergence, stability and solvability of the numerical method are analyzed; the theoretical results are strongly supported by the numerical experiment.
引用
收藏
页码:687 / 703
页数:16
相关论文
共 50 条
  • [31] Numerical Solution of a Subdiffusion Equation with Variable Order Time Fractional Derivative and Nonlinear Diffusion Coefficient
    A. Lapin
    R. Yanbarisov
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 2790 - 2803
  • [32] An Efficient Spline Collocation Method for a Nonlinear Fourth-Order Reaction Subdiffusion Equation
    Haixiang Zhang
    Xuehua Yang
    Da Xu
    [J]. Journal of Scientific Computing, 2020, 85
  • [33] A high order numerical scheme for solving a class of non-homogeneous time-fractional reaction diffusion equation
    Roul, Pradip
    Goura, V. M. K. Prasad
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1506 - 1534
  • [34] An Efficient Spline Collocation Method for a Nonlinear Fourth-Order Reaction Subdiffusion Equation
    Zhang, Haixiang
    Yang, Xuehua
    Xu, Da
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
  • [35] High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis
    Aghdam, Y. Esmaeelzade
    Mesgarani, H.
    Moremedi, G. M.
    Khoshkhahtinat, M.
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (01) : 217 - 225
  • [36] A High Order Accurate Numerical Method for Solving Two-Dimensional Dual-Phase-Lagging Equation with Temperature Jump Boundary Condition in Nanoheat Conduction
    Sun, Hong
    Du, Rui
    Dai, Weizhong
    Sun, Zhi-zhong
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 1742 - 1768
  • [37] Numerical study of the nonlinear anomalous reaction-subdiffusion process arising in the electroanalytical chemistry
    Nikan, O.
    Avazzadeh, Z.
    Tenreiro Machado, J. A.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 53
  • [38] Numerical method for solving uncertain spring vibration equation
    Jia, Lifen
    Lio, Waichon
    Yang, Xiangfeng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 428 - 441
  • [39] THE USE OF FINITE DIFFERENCE/ELEMENT APPROACHES FOR SOLVING THE TIME-FRACTIONAL SUBDIFFUSION EQUATION
    Zeng, Fanhai
    Li, Changpin
    Liu, Fawang
    Turner, Ian
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2976 - A3000
  • [40] An efficient high order numerical scheme for the time-fractional diffusion equation with uniform accuracy
    Cao, Junying
    Tan, Qing
    Wang, Zhongqing
    Wang, Ziqiang
    [J]. AIMS MATHEMATICS, 2023, 8 (07): : 16031 - 16061