Numerical method with high order accuracy for solving a anomalous subdiffusion equation

被引:0
作者
Y. Chen
Chang-Ming Chen
机构
[1] Xiamen University,School of Mathematical Sciences
来源
Numerical Algorithms | 2016年 / 72卷
关键词
Anomalous subdiffusion equation; Numerical method with high order accuracy; Convergence; Stability; Solvability; Fourier analysis; 26A33; 65M06; 65M12;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a numerical method with second order temporal accuracy and fourth order spatial accuracy is developed to solve a anomalous subdiffusion equation; by Fourier analysis, the convergence, stability and solvability of the numerical method are analyzed; the theoretical results are strongly supported by the numerical experiment.
引用
收藏
页码:687 / 703
页数:16
相关论文
共 75 条
[11]  
Anh V(2006)Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations Phys. Rev. E 74 031116-1973
[12]  
Turner I(2013)Numerical method for two dimensional fractional reaction subdiffusion equation Eur. Phys. J.-Special Topics 222 1961-499
[13]  
Chen C-M(2007)Anomalous diffusion with absorbing boundary Phys. Rev. E 76 061121-216
[14]  
Liu F(2008)Subdiffusion in a system with a thick membrane J. Membr. Sci. 320 492-736
[15]  
Anh V(2003)Anomalous diffusion equation: application to comic ray transport Nucl. Instr. Mech. Phys. Res. B 201 212-132
[16]  
Turner I(2005)The accuracy and stability of an implicit solution method for the fractional diffusion equation J. Comput. Phys. 205 719-467
[17]  
Cui M(2008)Anomalous subdiffusion with multispecies linear reaction dynamics Phys. Rev. E 77 021111-2240
[18]  
Cui M(2009)Modeling subdiffusion using reaction diffusion systems SIAM J. Appl. Math. 70 112-10870
[19]  
Gao GH(2009)Subdiffusion in time-averaged, confined random walks Phys. Rev. E 80 011109-1874
[20]  
Sun ZZ(2013)Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions J. Comput. Phys. 232 456-274