Multiple solutions for semilinear cone elliptic equations without Ambrosetti–Rabinowitz condition

被引:0
作者
Nhu Thang Nguyen
Thi Thu Huong Nguyen
机构
[1] Hanoi National University of Education,Department of Mathematics
[2] Hanoi University of Science and Technology,School of Applied Mathematics and Informatics
来源
Journal of Pseudo-Differential Operators and Applications | 2019年 / 10卷
关键词
Cone-degenerate operators; Cone Laplace–Beltrami; Cerami sequences; Fountain theorem; Subcritical growth; 35J20; 35J10; 35J70; 35A15; 35D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we establish the existence of multiple solutions for a class of semilinear cone degenerate elliptic Dirichlet boundary value problems involving subcritical nonlinearity (cone Sobolev exponent) without the Ambrosetti–Rabinowitz condition. The paper uses singular analysis to control the linear part to provide appropriate functional setting that a variation of the Moutain Pass argument can be applied.
引用
收藏
页码:747 / 767
页数:20
相关论文
共 36 条
[1]  
Anh CT(2016)Existence of solutions to Complex Var Elliptic Equ 61 1002-1013
[2]  
My BK(1973)-Laplace equations without the Ambrosetti–Rabinowitz condition J. Funct. Anal. 14 349-381
[3]  
Ambrosetti A(2012)Dual variational methods in critical theory and applications Calc. Var. Partial Differ. Equ. 43 463-484
[4]  
Rabinowitz PH(2012)Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities J. Differ. Equ. 252 4200-4228
[5]  
Chen H(2003)Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents Am. J. Math. 125 357-408
[6]  
Liu X(1981)Adjoints of elliptic cone operators Duke Math. J. 48 251-267
[7]  
Wei Y(2012)Oscillatory integrals with singular symbols Nonlinear Anal. 75 4637-4649
[8]  
Chen H(2014)On semilinear J. Geom. Anal. 24 118-143
[9]  
Liu X(2016)-Laplace equation J. Pseudo Differ. Oper. Appl. 7 451-471
[10]  
Wei Y(2015)Elliptic equations and systems with subscritical and critical exponential growth without the Ambrosetti–Rabinowitz condition Math. Notes 97 73-84