共 60 条
- [1] Abidi H(2004)Optimal bounds for the inviscid limit of Navier-Stokes equations Asymptot. Anal. 38 35-46
- [2] Danchin R(1989)Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels Comm. Par. Diff. Eq. 14 173-230
- [3] Alinhac S(1981)Rates of convergence for viscous splitting of the Navier-Stokes Math. Comp. 37 243-259
- [4] Beale J T(2017)Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields SIAM J. Math. Anal. 49 1932-1946
- [5] Majda A(2019)Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications Geom. Funct. Anal. 29 1773-1793
- [6] Constantin P(2019)A steady Euler flow with compact support Geom. Funct. Anal. 29 190-197
- [7] Elgindi T(2019)Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations Arch. Rational Mech. Anal. 233 1319-1382
- [8] Ignatova M(2017)Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate Ann. PDE 3 58pp-918
- [9] Vicol V(2006)Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions Nonlinearity 19 899-175
- [10] Constantin P(2011)Viscous boundary layer for the Navier-Stokes equations with the Navier slip conditions Arch. Ration. Mech. Anal. 199 145-469