The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension

被引:0
作者
Yan Yan
Weiping Yan
机构
[1] Henan University of Economics and Law,School of Mathematics and Information Science
[2] Guangxi University,College of Mathematics and Information Science
来源
Chinese Annals of Mathematics, Series B | 2023年 / 44卷
关键词
Navier-Stokes equations; Euler equations; Zero viscosity limit; 35Q30; 35Q31; 76D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space ℝ+ × ℝ2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser iteration scheme.
引用
收藏
页码:209 / 234
页数:25
相关论文
共 60 条
  • [1] Abidi H(2004)Optimal bounds for the inviscid limit of Navier-Stokes equations Asymptot. Anal. 38 35-46
  • [2] Danchin R(1989)Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels Comm. Par. Diff. Eq. 14 173-230
  • [3] Alinhac S(1981)Rates of convergence for viscous splitting of the Navier-Stokes Math. Comp. 37 243-259
  • [4] Beale J T(2017)Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields SIAM J. Math. Anal. 49 1932-1946
  • [5] Majda A(2019)Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications Geom. Funct. Anal. 29 1773-1793
  • [6] Constantin P(2019)A steady Euler flow with compact support Geom. Funct. Anal. 29 190-197
  • [7] Elgindi T(2019)Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations Arch. Rational Mech. Anal. 233 1319-1382
  • [8] Ignatova M(2017)Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate Ann. PDE 3 58pp-918
  • [9] Vicol V(2006)Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions Nonlinearity 19 899-175
  • [10] Constantin P(2011)Viscous boundary layer for the Navier-Stokes equations with the Navier slip conditions Arch. Ration. Mech. Anal. 199 145-469