Online Prediction of Onsets of Seizure-like Events in Hippocampal Neural Networks Using Wavelet Artificial Neural Networks

被引:0
|
作者
Alan W. L. Chiu
Eunji E. Kang
Miron Derchansky
Peter L. Carlen
Berj L. Bardakjian
机构
[1] Institute of Biomaterials and Biomedical Engineering,Toronto Western Research Institute
[2] Department of Electrical and Computer Engineering,Institute of Biomaterials and Biomedical Engineering
[3] Department of Physiology,undefined
[4] University of Toronto,undefined
[5] University of Toronto,undefined
来源
Annals of Biomedical Engineering | 2006年 / 34卷
关键词
Online processing; Artificial neural networks; Prediction of seizure onset; Hippocampal slice; Wavelet transform; epilepsy model; Low magnesium conditions; Spontaneous seizure-like events;
D O I
暂无
中图分类号
学科分类号
摘要
It has been previously shown that wavelet artificial neural networks (WANNs) are able to classify the different states of epileptiform activity and predict the onsets of seizure-like events (SLEs) by offline processing (Ann. Biomed. Eng. 33(6):798–810, 2005) of the electrical data from the in-vitro hippocampal slice model of recurrent spontaneous SLEs. The WANN design entailed the assumption that time-varying frequency information from the biological recordings can be used to estimate the times at which onsets of SLEs would most likely occur in the future. Progressions of different frequency components were captured by the artificial neural network (ANN) using selective frequency inputs from the initial wavelet transform of the biological data. The training of the WANN had been established using 184 SLE episodes in 34 slices from 21 rats offline. Nine of these rats also exhibited periods of interictal bursts (IBs). These IBs were included as part of the training to help distinguish the difference in dynamics of bursting activities between the preictal- and interictal type. In this paper, we present the results of an online processing using WANN on 23 in-vitro rat hippocampal slices from 9 rats having 93 spontaneous SLE episodes generated under low magnesium conditions. Over the test cases, three of the nine rats exhibited over 30 min of IB activities. We demonstrated that the WANN was able to classify the different states, namely, interictal, preictal, ictal, and IB activities with an accuracy of 86.6, 72.6, 84.5, and 69.1%, respectively. Prediction of state transitions into ictal events was achieved using regression of initial “normalized time-to-onset” estimates. The SLE onsets can be estimated up to 36.4 s ahead of their actual occurrences, with a mean error of 14.3 ± 27.0 s. The prediction errors decreased progressively as the actual time-to-onset decreased and more initial “normalized time-to-onset” estimates were used for the regression procedure.
引用
收藏
页码:282 / 294
页数:12
相关论文
共 50 条
  • [31] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [32] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [33] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228
  • [34] Prediction of Modal Shift Using Artificial Neural Networks
    Akgol, Kadir
    Aydin, Metin Mutlu
    Asilkan, Ozcan
    Gunay, Banihan
    TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS, 2014, 3 (03): : 223 - 229
  • [35] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [36] Prediction of slump in concrete using artificial neural networks
    Agrawal, V.
    Sharma, A.
    World Academy of Science, Engineering and Technology, 2010, 69 : 25 - 32
  • [37] Prediction of wheat yield using artificial neural networks
    Safa, B
    Khalili, A
    Teshnehlab, M
    Liaghat, AM
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 350 - 351
  • [38] GPS Orbital Prediction Using Artificial Neural Networks
    Yousif, Hamad
    El-Rabbany, Ahmed
    PROCEEDINGS OF THE 2008 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2008, 2008, : 773 - 780
  • [39] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [40] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212