Online Prediction of Onsets of Seizure-like Events in Hippocampal Neural Networks Using Wavelet Artificial Neural Networks

被引:0
|
作者
Alan W. L. Chiu
Eunji E. Kang
Miron Derchansky
Peter L. Carlen
Berj L. Bardakjian
机构
[1] Institute of Biomaterials and Biomedical Engineering,Toronto Western Research Institute
[2] Department of Electrical and Computer Engineering,Institute of Biomaterials and Biomedical Engineering
[3] Department of Physiology,undefined
[4] University of Toronto,undefined
[5] University of Toronto,undefined
来源
Annals of Biomedical Engineering | 2006年 / 34卷
关键词
Online processing; Artificial neural networks; Prediction of seizure onset; Hippocampal slice; Wavelet transform; epilepsy model; Low magnesium conditions; Spontaneous seizure-like events;
D O I
暂无
中图分类号
学科分类号
摘要
It has been previously shown that wavelet artificial neural networks (WANNs) are able to classify the different states of epileptiform activity and predict the onsets of seizure-like events (SLEs) by offline processing (Ann. Biomed. Eng. 33(6):798–810, 2005) of the electrical data from the in-vitro hippocampal slice model of recurrent spontaneous SLEs. The WANN design entailed the assumption that time-varying frequency information from the biological recordings can be used to estimate the times at which onsets of SLEs would most likely occur in the future. Progressions of different frequency components were captured by the artificial neural network (ANN) using selective frequency inputs from the initial wavelet transform of the biological data. The training of the WANN had been established using 184 SLE episodes in 34 slices from 21 rats offline. Nine of these rats also exhibited periods of interictal bursts (IBs). These IBs were included as part of the training to help distinguish the difference in dynamics of bursting activities between the preictal- and interictal type. In this paper, we present the results of an online processing using WANN on 23 in-vitro rat hippocampal slices from 9 rats having 93 spontaneous SLE episodes generated under low magnesium conditions. Over the test cases, three of the nine rats exhibited over 30 min of IB activities. We demonstrated that the WANN was able to classify the different states, namely, interictal, preictal, ictal, and IB activities with an accuracy of 86.6, 72.6, 84.5, and 69.1%, respectively. Prediction of state transitions into ictal events was achieved using regression of initial “normalized time-to-onset” estimates. The SLE onsets can be estimated up to 36.4 s ahead of their actual occurrences, with a mean error of 14.3 ± 27.0 s. The prediction errors decreased progressively as the actual time-to-onset decreased and more initial “normalized time-to-onset” estimates were used for the regression procedure.
引用
收藏
页码:282 / 294
页数:12
相关论文
共 50 条
  • [21] ECG events detection and classification using wavelet and neural networks
    Yang, MY
    Hu, WC
    Shyu, LY
    PROCEEDINGS OF THE 19TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 19, PTS 1-6: MAGNIFICENT MILESTONES AND EMERGING OPPORTUNITIES IN MEDICAL ENGINEERING, 1997, 19 : 280 - 281
  • [22] Prediction of seismic events in mines using neural networks
    van Zyl, J
    Omlin, CW
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1410 - 1414
  • [23] ONLINE PREDICTION OF FERMENTATION VARIABLES USING NEURAL NETWORKS
    THIBAULT, J
    VANBREUSEGEM, V
    CHERUY, A
    BIOTECHNOLOGY AND BIOENGINEERING, 1990, 36 (10) : 1041 - 1048
  • [24] Classification of spiking events with wavelet neural networks
    Nazimov, Alexey I.
    Pavlov, Alexey N.
    DYNAMICS AND FLUCTUATIONS IN BIOMEDICAL PHOTONICS VIII, 2011, 7898
  • [25] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [26] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33
  • [27] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [28] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [29] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [30] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,