On quantum mechanics and generalized Clifford algebras

被引:3
作者
A. K. Kwaśniewski
W. Bajguz
I. Jaroszewski
机构
[1] Bialystok University,Computer Science Laboratory ul. Sosnowa 64 Institute of Physics
[2] College of Applied Mathematics and Computer Science,undefined
关键词
Quantum Mechanics; Coherent State; Clifford Algebra; Quantum Harmonic Oscillator; Sylvester Matrix;
D O I
10.1007/BF03043107
中图分类号
学科分类号
摘要
In this note we give elementary examples of the naturalness of generalized Clifford algebras appearance, in some particular quantum mechanical models.
引用
收藏
页码:417 / 432
页数:15
相关论文
共 44 条
[1]  
Mackey G. M.(1992)The Scope and History of Commutative and Non Commutative Harmonic Analysis American Math. Soc. and London Math. Soc., History of Mathematics 5 249-274
[2]  
Hannay J. H.(1980)Clifford Algebras, Quantum Mechanics and Fibonacci-like Sequences Physica 1D 267-290
[3]  
Berry M. V.(1994)The Quantum group Advances in Applied Clifford Algebras 4 73-88
[4]  
Kwaśniewski A. K.(1985) (2) and a q-analogue of the boson operators J. Math. Gen. 18 1309-1314
[5]  
Bajguz W.(1990)Clifford Algebras of Polynomials, Generalized Grassmann Algebras and q-Deformed Heisenberg Algebras J. Math. Phys. 31 2987-2987
[6]  
Krause J.(1973)Algebre de Clifford d’un Polynome Rev. Mexicana de Física 22 15-15
[7]  
Aldrovandi R.(1988)undefined Physica 149 A 267-282
[8]  
Galetti D.(1986)undefined J. Phys. A: Math. Gen. 19 1496-1496
[9]  
Levi-Leblond J. M.(1972)undefined IEEE Transactions on Audio and Electroacoustics 20 66-74
[10]  
Galetti D.(1980)undefined Journal of Number Theory 12 122-127