Combinatorial extremum problems for 2-colorings of hypergraphs

被引:0
作者
A. P. Rozovskaya
机构
[1] Moscow State University,
来源
Mathematical Notes | 2011年 / 90卷
关键词
n-uniform hypergraph; 2-coloring; asymptotic lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a generalization of the Erdős-Hajnal classical combinatorial problem. Let k be a positive integer. It is required to find the value of mk(n) equal to the minimum number of edges of an n-uniform hypergraph that does not admit 2-colorings of the set of its vertices such that each edge of the hypergraph contains exactly k vertices of each color. In the present paper, we obtain a new asymptotic lower bound for mk(n), which improves the preceding results in a wide range of values of the parameter k. We also consider some other generalizations of this problem.
引用
收藏
相关论文
共 11 条
[1]  
Erdős P.(1961)On a property of families of sets Acta Math. Acad. Sci. Hungar 12 87-123
[2]  
Hajnal A.(1963)On a combinatorial problem Nordisk Mat. Tidskr. 11 5-10
[3]  
Erdős P.(1964)On a combinatorial problem. II Acta Math. Acad. Sci. Hungar 15 445-447
[4]  
Erdős P.(2000)Improved bounds and algorithms for hypergraph 2-coloring Random Structures Algorithms 16 4-32
[5]  
Radhakrishnan J.(2004)On one combinatorial problem of Erdős Dokl. Ross. Akad. Nauk 396 166-169
[6]  
Srinivasan A.(2007)Extremal problems for colorings of uniform hypergraphs Izv. Ross. Akad. Nauk Ser. Mat. 71 183-222
[7]  
Shabanov D. A.(2008)Randomized algorithms for colorings of hypergraphs Mat. Sb. 199 139-160
[8]  
Shabanov D. A.(2009)Greedy colorings for uniform hypergraphs Random Structures Algorithms 35 216-221
[9]  
Shabanov D. A.(1990)An application of Lovász Local Lemma — a new lower bound for the van der Waerden number Random Structures Algorithms 1 343-360
[10]  
Pluhár A.(undefined)undefined undefined undefined undefined-undefined