Fuzzy logic models in a category of fuzzy relations

被引:0
|
作者
Jiří Močkoř
机构
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
来源
Soft Computing | 2009年 / 13卷
关键词
Sets with similarities; MV-algebras; Category of fuzzy relations; Fuzzy logic; Models of fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal E}}$$\end{document} of formulas ψ in a first order fuzzy logic in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_\mathcal {E}}$$\end{document} are then morphisms in a category SetR(Ω) from some Ω-set to the object \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Omega,\leftrightarrow)}$$\end{document}. We define homomorphisms between models in a category SetR(Ω) and we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi : \mathcal {E}_1\rightarrow \mathcal {E}_2}$$\end{document} is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal {E}_i}}$$\end{document} of a formula ψ in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}_i}$$\end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条
  • [41] Compactness in fuzzy logic
    YING Mingsheng Department of Computer Science and Technology
    Chinese Science Bulletin, 1998, (14) : 1166 - 1171
  • [42] Fuzzy logic in anaesthesia
    Linkens, DA
    Mason, DG
    Abbod, MF
    Shieh, JS
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 1996, 18 (05) : 238 - 246
  • [43] Fuzzy Logic in Medicine
    LaBrunda, Michelle
    LaBrunda, Andrew
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2008, 1 (01) : 27 - 33
  • [44] Fuzzy logic with biomolecules
    R. Deaton
    M. Garzon
    Soft Computing, 2001, 5 (1) : 2 - 9
  • [45] Fuzzy equational logic
    Bělohlávek R.
    Archive for Mathematical Logic, 2002, 41 (1) : 83 - 90
  • [46] Fuzzy logic in insurance
    Shapiro, AF
    INSURANCE MATHEMATICS & ECONOMICS, 2004, 35 (02): : 399 - 424
  • [47] Precision and Fuzzy Logic
    Yuksel, Yucel
    TURKISH JOURNAL OF SOCIOLOGY-SOSYOLOJI DERGISI, 2011, 3 (22): : 517 - 531
  • [48] Compactness in fuzzy logic
    Ying, MS
    CHINESE SCIENCE BULLETIN, 1998, 43 (14): : 1166 - 1171
  • [49] Fuzzy constructive logic
    Zaslavsky I.D.
    Journal of Mathematical Sciences, 2009, 158 (5) : 677 - 688
  • [50] Is there a need for fuzzy logic?
    Zadeh, Lotfi A.
    INFORMATION SCIENCES, 2008, 178 (13) : 2751 - 2779