Fuzzy logic models in a category of fuzzy relations
被引:0
|
作者:
Jiří Močkoř
论文数: 0引用数: 0
h-index: 0
机构:University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
Jiří Močkoř
机构:
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
来源:
Soft Computing
|
2009年
/
13卷
关键词:
Sets with similarities;
MV-algebras;
Category of fuzzy relations;
Fuzzy logic;
Models of fuzzy logic;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We investigate interpretations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\|\psi\|_{\mathcal E}}$$\end{document} of formulas ψ in a first order fuzzy logic in models \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {E}}$$\end{document} which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\|\psi\|_\mathcal {E}}$$\end{document} are then morphisms in a category SetR(Ω) from some Ω-set to the object \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(\Omega,\leftrightarrow)}$$\end{document}. We define homomorphisms between models in a category SetR(Ω) and we prove that if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\varphi : \mathcal {E}_1\rightarrow \mathcal {E}_2}$$\end{document} is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\|\psi\|_{\mathcal {E}_i}}$$\end{document} of a formula ψ in models \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {E}_i}$$\end{document}.
机构:
Inst. for Res./Appl. Fuzzy Modeling, University of Ostrava, 701 03 OstravaInst. for Res./Appl. Fuzzy Modeling, University of Ostrava, 701 03 Ostrava
机构:
Institute of Informatics and Automation Problems, Armenian Academy of Sciences, YerevanInstitute of Informatics and Automation Problems, Armenian Academy of Sciences, Yerevan