Fuzzy logic models in a category of fuzzy relations

被引:0
|
作者
Jiří Močkoř
机构
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
来源
Soft Computing | 2009年 / 13卷
关键词
Sets with similarities; MV-algebras; Category of fuzzy relations; Fuzzy logic; Models of fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal E}}$$\end{document} of formulas ψ in a first order fuzzy logic in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_\mathcal {E}}$$\end{document} are then morphisms in a category SetR(Ω) from some Ω-set to the object \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Omega,\leftrightarrow)}$$\end{document}. We define homomorphisms between models in a category SetR(Ω) and we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi : \mathcal {E}_1\rightarrow \mathcal {E}_2}$$\end{document} is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal {E}_i}}$$\end{document} of a formula ψ in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}_i}$$\end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条
  • [31] Application of fuzzy-logic models for metabolic control analysis
    Franco-Lara, Ezequiel
    Weuster-Botz, Dirk
    JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (03) : 391 - 399
  • [32] Aggregating Measures using Fuzzy Logic for Evaluating Feature Models
    Bezerra, Carla I. M.
    Andrade, Rossana M. C.
    Monteiro, Jose M. S.
    Cedraz, Davi
    TWELFTH INTERNATIONAL WORKSHOP ON VARIABILITY MODELLING OF SOFTWARE-INTENSIVE SYSTEMS (VAMOS 2018), 2017, : 35 - 42
  • [33] Behavior patterns in hormonal treatments using fuzzy logic models
    J. G. Enríquez
    V. Cid
    N. Muntaner
    J. Aroba
    J. Navarro
    F. J. Domínguez-Mayo
    M. J. Escalona
    I. Ramos
    Soft Computing, 2018, 22 : 79 - 90
  • [34] Behavior patterns in hormonal treatments using fuzzy logic models
    Enriquez, J. G.
    Cid, V.
    Muntaner, N.
    Aroba, J.
    Navarro, J.
    Dominguez-Mayo, F. J.
    Escalona, M. J.
    Ramos, I.
    SOFT COMPUTING, 2018, 22 (01) : 79 - 90
  • [35] Transformation of geometric models into orthogonal polyhedra using fuzzy logic
    Obiala, R
    Topping, BHV
    Seed, GM
    Clark, DER
    ENGINEERING COMPUTATIONS, 2005, 22 (1-2) : 62 - 86
  • [36] Online prediction of pulp brightness using fuzzy logic models
    Achiche, Sofiane
    Baron, Luc
    Balazinski, Marek
    Benaoudia, Mokhtar
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2007, 20 (01) : 25 - 36
  • [37] FUZZY DYNAMIC LOGIC
    Perlovsky, Leonid I.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2006, 2 (01) : 43 - 55
  • [38] An Evolving Feature Weighting Framework for Granular Fuzzy Logic Models
    Muda, Muhammad Zaiyad
    Panoutsos, George
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, 2022, 1409 : 3 - 14
  • [39] Fuzzy Logic and Multi-agent for Active Contour Models
    Nachour, Abdelhafid
    Ouzizi, Latifa
    Aoura, Youssef
    PROCEEDINGS OF THE THIRD INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT-AECIA 2016, 2018, 565 : 229 - 237
  • [40] Efficient design using fuzzy logic based regression models
    Schaible, B
    Lee, YC
    Xie, H
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART A, 1998, 21 (01): : 132 - 141