Fuzzy logic models in a category of fuzzy relations

被引:0
|
作者
Jiří Močkoř
机构
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
来源
Soft Computing | 2009年 / 13卷
关键词
Sets with similarities; MV-algebras; Category of fuzzy relations; Fuzzy logic; Models of fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal E}}$$\end{document} of formulas ψ in a first order fuzzy logic in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_\mathcal {E}}$$\end{document} are then morphisms in a category SetR(Ω) from some Ω-set to the object \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Omega,\leftrightarrow)}$$\end{document}. We define homomorphisms between models in a category SetR(Ω) and we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi : \mathcal {E}_1\rightarrow \mathcal {E}_2}$$\end{document} is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal {E}_i}}$$\end{document} of a formula ψ in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}_i}$$\end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条