Fuzzy logic models in a category of fuzzy relations

被引:0
|
作者
Jiří Močkoř
机构
[1] University of Ostrava,Institute for Research and Applications of Fuzzy Modeling
来源
Soft Computing | 2009年 / 13卷
关键词
Sets with similarities; MV-algebras; Category of fuzzy relations; Fuzzy logic; Models of fuzzy logic;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal E}}$$\end{document} of formulas ψ in a first order fuzzy logic in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}}$$\end{document} which are based on objects of a category SetR(Ω) which consists of Ω-sets, i.e. sets with similarity relations with values in a complete MV-algebra Ω and with morphisms defined as special fuzzy relations between Ω-sets. The interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_\mathcal {E}}$$\end{document} are then morphisms in a category SetR(Ω) from some Ω-set to the object \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\Omega,\leftrightarrow)}$$\end{document}. We define homomorphisms between models in a category SetR(Ω) and we prove that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi : \mathcal {E}_1\rightarrow \mathcal {E}_2}$$\end{document} is a (special) homomorphism of models in a category SetR(Ω) then there is a relation between interpretations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\|\psi\|_{\mathcal {E}_i}}$$\end{document} of a formula ψ in models \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {E}_i}$$\end{document}.
引用
收藏
页码:591 / 596
页数:5
相关论文
共 50 条
  • [1] Fuzzy logic models in a category of fuzzy relations
    Mockor, Jiri
    SOFT COMPUTING, 2009, 13 (06) : 591 - 596
  • [2] Models of fuzzy logic in a category of sets with similarity relations
    Mockor, Jiri
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (05): : 1063 - 1068
  • [3] Fuzzy logic models in a category of sets with similarities
    Mockor, Jiri
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 163 - 168
  • [4] Fuzzy logic in economic models
    Carles Ferrer-Comalat, Joan
    Corominas-Coll, Dolors
    Linares-Mustaros, Salvador
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (05) : 5333 - 5342
  • [5] α-CUTS AND MODELS OF FUZZY LOGIC
    Mockor, Jiri
    COMPUTATIONAL INTELLIGENCE: FOUNDATIONS AND APPLICATIONS: PROCEEDINGS OF THE 9TH INTERNATIONAL FLINS CONFERENCE, 2010, 4 : 52 - 57
  • [6] Computational Models of Affect and Fuzzy Logic
    van der Heide, Albert
    Sanchez, Daniel
    Trivino, Gracian
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 620 - 627
  • [7] Completeness with respect to a chain and universal models in fuzzy logic
    Montagna, Franco
    ARCHIVE FOR MATHEMATICAL LOGIC, 2011, 50 (1-2): : 161 - 183
  • [8] FUZZY CONDITIONAL LOGIC
    DUMITRESCU, D
    FUZZY SETS AND SYSTEMS, 1994, 68 (02) : 171 - 179
  • [9] Fuzzy reasoning and fuzzy logic
    Wang, GJ
    SOFT COMPUTING IN INTELLIGENT SYSTEMS AND INFORMATION PROCESSING, 1996, : 478 - 483
  • [10] Formulation of qualitative models using fuzzy logic
    Bolloju, N
    DECISION SUPPORT SYSTEMS, 1996, 17 (04) : 275 - 298