Voronoi summation formulae and multiplicative functions on permutations

被引:0
作者
Vytas Zacharovas
机构
[1] Vilnius University,Department of Mathematics and Informatics
来源
The Ramanujan Journal | 2011年 / 24卷
关键词
Tauberian theorems; Divergent series; Voronoi summability; Nörlund summability; Symmetric group; Random permutations; Additive functions; Multiplicative functions; Berry–Esseen bound; 60C05; 40G05; 40E05; 20P05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Tauberian theorem for the Voronoi summation method of divergent series with an estimate of the remainder term. The results on the Voronoi summability are then applied to analyze the mean values of multiplicative functions on random permutations.
引用
收藏
页码:289 / 329
页数:40
相关论文
共 50 条
[21]   On multiplicative functions which are small on average [J].
Koukoulopoulos, Dimitris .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2013, 23 (05) :1569-1630
[22]   Complete multiplicative functions of zero sum [J].
Kahane, Jean-Pierre ;
Saias, Eric .
EXPOSITIONES MATHEMATICAE, 2017, 35 (04) :364-389
[23]   ON BENFORD'S LAW FOR MULTIPLICATIVE FUNCTIONS [J].
Chandee, Vorrapan ;
Li, Xiannan ;
Pollack, Paul ;
Roy, Akash Singha .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (11) :4607-4619
[24]   The mean values of multiplicative functions IV [J].
Stepanauskas, G .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 1998, 52 (3-4) :659-681
[25]   On multiplicative functions resembling the Mobius function [J].
Maier, H. ;
Sankaranarayanan, A. .
JOURNAL OF NUMBER THEORY, 2016, 163 :75-88
[26]   On multiplicative functions which are small on average [J].
Dimitris Koukoulopoulos .
Geometric and Functional Analysis, 2013, 23 :1569-1630
[27]   Generalized Fourier coefficients of multiplicative functions [J].
Matthiesen, Lilian .
ALGEBRA & NUMBER THEORY, 2018, 12 (06) :1311-1400
[28]   Compositions of Functions and Permutations Specified by Minimal Reaction Systems [J].
Teh, Wen Chean .
INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2018, 29 (07) :1165-1179
[29]   A note on multiplicative functions resembling the Mobius function [J].
Aymone, Marco .
JOURNAL OF NUMBER THEORY, 2020, 212 :113-121
[30]   On multiplicative functions which are additive on sums of primes [J].
Artūras Dubickas ;
Paulius Šarka .
Aequationes mathematicae, 2013, 86 :81-89