共 50 条
- [21] Gradient Estimates and Harnack Inequalities for Positive Solutions of Lu=∂u∂t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{L}u=\frac{\partial u}{\partial t}$$\end{document} on Self-shrinkers Acta Mathematica Sinica, English Series, 2019, 35 (7) : 1217 - 1226
- [22] Z-eigenvalues based structured tensors: Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors and strong Mz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_z$$\end{document}-tensors Computational and Applied Mathematics, 2019, 38 (4)
- [23] Dupin Cyclides are Not of L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{1}$$\end{document}-Finite Type Bulletin of the Iranian Mathematical Society, 2018, 44 (6) : 1581 - 1589
- [24] Eigenvalues for the Clamped Plate Problem of Lν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{L}_{\nu}^{2}$$\end{document} Operator on Complete Riemannian Manifolds Acta Mathematica Sinica, English Series, 2024, 40 (9) : 2223 - 2243
- [25] The Cauchy–Riemann equations in the unit ball of l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l^{2}$$\end{document} Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (2): : 181 - 192
- [26] Inequalities for a class of Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_n$$\end{document}-operators Complex Analysis and its Synergies, 2024, 10 (1)
- [27] Spherical Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document}-Type Operators in Clifford Analysis and Applications Complex Analysis and Operator Theory, 2017, 11 (5) : 1095 - 1112
- [28] Refinement of triangle inequality for the Schatten p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-norm Advances in Operator Theory, 2020, 5 (4) : 1635 - 1645
- [29] The Intrinsic π-Operator on Domain Manifolds in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^{n+1}}$$\end{document} Complex Analysis and Operator Theory, 2010, 4 (2) : 271 - 280
- [30] On the characteristic polynomial of the Aα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\alpha $$\end{document}-matrix for some operations of graphs Computational and Applied Mathematics, 2023, 42 (5)