Estimates for the First Eigenvalue of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {L}}$$\end{document}-Operator on Self-shrinkers

被引:0
|
作者
Yecheng Zhu
机构
[1] Anhui University of Technology,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
[3] Nankai University,Chern Institute of Mathematics
关键词
-operator; gradient estimate; self-shrinker; eigenvalue; 53C40; 53C44;
D O I
10.1007/s00025-021-01533-z
中图分类号
学科分类号
摘要
In this paper, we investigate the Dirichlet and Neumann eigenvalue problems in bounded domains on a complete self-shrinker, then we get some lower bound estimates for the first non-zero eigenvalue of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {L}}$$\end{document}.
引用
收藏
相关论文
共 50 条