Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric

被引:0
作者
Jean-François Bony
Dietrich Häfner
机构
[1] Institut de Mathématiques de Bordeaux,
[2] UMR 5251 du CNRS,undefined
[3] Université de Bordeaux I,undefined
来源
Communications in Mathematical Physics | 2008年 / 282卷
关键词
Black Hole; Wave Equation; Angular Direction; Resolvent Estimate; Resonance Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an expansion of the solution of the wave equation on the De Sitter–Schwarzschild metric in terms of resonances. The principal term in the expansion is due to a resonance at 0. The error term decays polynomially if we permit a logarithmic derivative loss in the angular directions and exponentially if we permit an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} derivative loss in the angular directions.
引用
收藏
页码:697 / 719
页数:22
相关论文
共 50 条
[41]   Fast energy decay for wave equation with a monotone potential and an effective damping [J].
Li, Xiaoyan ;
Ikehata, Ryo .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2024, 21 (02) :255-272
[42]   EXPONENTIAL DECAY DOMAIN OF ENERGY FOR WAVE EQUATION UNDER FEEDBACK CONTROL [J].
张维弢 ;
冯德兴 .
Acta Mathematicae Applicatae Sinica(English Series), 1999, (03) :249-256
[43]   Energy decay for the wave equation with boundary and localized dissipations in exterior domains [J].
Bae, JJ ;
Nakao, M .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (7-8) :771-783
[44]   Particle Decay in de Sitter Spacetime via Quantum Tunneling [J].
Volovik, G. E. .
JETP LETTERS, 2009, 90 (01) :1-4
[45]   GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS FOR A WAVE EQUATION WITH NON-CONSTANT DELAY AND NONLINEAR WEIGHTS [J].
Barros, Vanessa ;
Nonato, Carlos ;
Raposo, Carlos .
ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (01) :205-220
[46]   EXPONENTIAL ENERGY DECAY FOR KERR-DE SITTER BLACK HOLES BEYOND EVENT HORIZONS [J].
Dyatlov, Semyon .
MATHEMATICAL RESEARCH LETTERS, 2011, 18 (05) :1023-1035
[47]   IMPROVED LOCAL ENERGY DECAY FOR THE WAVE EQUATION ON ASYMPTOTICALLY EUCLIDEAN ODD DIMENSIONAL MANIFOLDS IN THE SHORT RANGE CASE [J].
Bony, Jean-Francois ;
Haefner, Dietrich .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2013, 12 (03) :635-650
[48]   A note on decay rates of the local energy for wave equations with Lipschitz wavespeeds [J].
Charao, Ruy Coimbra ;
Ikehata, Ryo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
[49]   Some Remarks on the Local Energy Decay for Wave Equations in the Whole Space [J].
Ikehata, Ryo .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2019, 9 (02) :133-148
[50]   Concept of temperature in multi-horizon spacetimes: analysis of Schwarzschild–De Sitter metric [J].
T. Roy Choudhury ;
T. Padmanabhan .
General Relativity and Gravitation, 2007, 39 :1789-1811