Decay and Non-Decay of the Local Energy for the Wave Equation on the De Sitter–Schwarzschild Metric

被引:0
作者
Jean-François Bony
Dietrich Häfner
机构
[1] Institut de Mathématiques de Bordeaux,
[2] UMR 5251 du CNRS,undefined
[3] Université de Bordeaux I,undefined
来源
Communications in Mathematical Physics | 2008年 / 282卷
关键词
Black Hole; Wave Equation; Angular Direction; Resolvent Estimate; Resonance Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We describe an expansion of the solution of the wave equation on the De Sitter–Schwarzschild metric in terms of resonances. The principal term in the expansion is due to a resonance at 0. The error term decays polynomially if we permit a logarithmic derivative loss in the angular directions and exponentially if we permit an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} derivative loss in the angular directions.
引用
收藏
页码:697 / 719
页数:22
相关论文
共 50 条
[21]   Energy Decay Rate of Solutions for the Wave Equation with Singular Nonlinearities [J].
Abbes Benaissa ;
Abdelkader Maatoug .
Acta Applicandae Mathematicae, 2011, 113 :117-127
[22]   LOCAL ENERGY DECAY AND SMOOTHING EFFECT FOR THE DAMPED SCHRODINGER EQUATION [J].
Khenissi, Moez ;
Royer, Julien .
ANALYSIS & PDE, 2017, 10 (06) :1285-1315
[23]   Energy Decay Rate of Solutions for the Wave Equation with Singular Nonlinearities [J].
Benaissa, Abbes ;
Maatoug, Abdelkader .
ACTA APPLICANDAE MATHEMATICAE, 2011, 113 (01) :117-127
[24]   Energy Decay for the Damped Wave Equation Under a Pressure Condition [J].
Emmanuel Schenck .
Communications in Mathematical Physics, 2010, 300 :375-410
[25]   ENERGY DECAY ESTIMATES FOR A WAVE EQUATION WITH NONLINEAR BOUNDARY FEEDBACK [J].
Cherkaoui, Mohammad ;
Yebari, Naji .
GLASNIK MATEMATICKI, 2008, 43 (02) :375-386
[26]   Weighted energy decay for 3D wave equation [J].
Kopylova, E. A. .
ASYMPTOTIC ANALYSIS, 2009, 65 (1-2) :1-16
[27]   Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry [J].
Finster, Felix ;
Smoller, Joel .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (01) :71-110
[28]   Local energy decay for linear wave equations with variable coefficients [J].
Ikehata, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (01) :330-348
[29]   A note on local energy decay results for wave equations with a potential [J].
Ikehata, Ryo .
ASYMPTOTIC ANALYSIS, 2023, 134 (1-2) :281-295
[30]   Scattering and exponential decay of the local energy for the solutions of semilinear and subcritical wave equation outside convex obstacle [J].
Ahmed Bchatnia ;
Moez Daoulatli .
Mathematische Zeitschrift, 2004, 247 :619-642