Factor copula models for right-censored clustered survival data

被引:0
作者
Eleanderson Campos
Roel Braekers
Devanil J. de Souza
Lucas M. Chaves
机构
[1] Federal University of Lavras,Department of Statistics
[2] Universiteit Hasselt,Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics
[3] KU Leuven, I
来源
Lifetime Data Analysis | 2021年 / 27卷
关键词
Clustered survival data; Factor copula models; Intracluster dependence; Multivariate survival data; Varying cluster size;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we extend the factor copula model to deal with right-censored event time data grouped in clusters. The new methodology allows for clusters to have variable sizes ranging from small to large and intracluster dependence to be flexibly modeled by any parametric family of bivariate copulas, thus encompassing a wide range of dependence structures. Incorporation of covariates (possibly time dependent) in the margins is also supported. Three estimation procedures are proposed: both one- and two-stage parametric and a two-stage semiparametric method where marginal survival functions are estimated by using a Cox proportional hazards model. We prove that the estimators are consistent and asymptotically normally distributed, and assess their finite sample behavior with simulation studies. Furthermore, we illustrate the proposed methods on a data set containing the time to first insemination after calving in dairy cattle clustered in herds of different sizes.
引用
收藏
页码:499 / 535
页数:36
相关论文
共 46 条
[11]  
Cox DR(2009)Modelling udder infection data using copula models for quadruples J Stat Plan Inference 139 3865-3877
[12]  
Duchateau L(2010)A gaussian copula model for multivariate survival data Stat Biosci 2 154-179
[13]  
Janssen P(2017)Extending the archimedean copula methodology to model multivariate survival data grouped in clusters of variable size J R Stat Soc Ser B 79 483-505
[14]  
Emura T(2018)Bayesian bivariate survival analysis using the power variance function copula Lifetime Data Anal 24 355-383
[15]  
Nakatochi M(2020)An approach to model clustered survival data with dependent censoring Biom J 62 157-174
[16]  
Murotani K(1995)Inferences on the association parameter in copula models for bivariate survival data Biometrics 51 1384-1399
[17]  
Rondeau V(1959)Fonctions de répartition à n dimensions et leurs marges Publ Inst Statist Univ Par 8 229-231
[18]  
Glidden DV(1998)Marginal regression models for multivariate failure time data J Am Stat Assoc 93 1164-1175
[19]  
Goethals K(2015)A Package for Survival Analysis in S R package version 2 38-21
[20]  
Janssen P(2007)Enjoy the joy of copulas: with a package copula J Stat Softw 21 1-undefined