Twisted Tensor Products of Kn with Km

被引:0
作者
Jack Arce
Jorge A. Guccione
Juan J. Guccione
Christian Valqui
机构
[1] Pontificia Universidad Católica del Perú,Sección Matemáticas, PUCP
[2] Universidad de Buenos Aires,Facultad de Ciencias Exactas y Naturales, Departamento de Matemática
[3] CONICET-Universidad de Buenos Aires,Instituto de Investigaciones Matemáticas “Luis A. Santaló” (IMAS)
[4] CONICET,undefined
[5] Instituto Argentino de Matemática (IAM),undefined
[6] Instituto de Matemática y Ciencias Afines (IMCA),undefined
来源
Algebras and Representation Theory | 2019年 / 22卷
关键词
Twisted tensor products; Quivers; Primary 16S35; Secondary 16S38;
D O I
暂无
中图分类号
学科分类号
摘要
We find three families of twisting maps of Km with Kn, where K is a field, and we make a detailed study of its properties. One of them is related to truncated quiver algebras, the second one consists of deformations of the first and the third one requires m = n and yields algebras isomorphic to Mn(K).
引用
收藏
页码:1599 / 1651
页数:52
相关论文
共 38 条
[1]  
Brzeziński T(1998)Coalgebra bundles Commun. Math. Phys. 191 467-492
[2]  
Majid S(2000)Quantum geometry of algebra factorisations and coalgebra bundles Commun. Math. Phys. 213 491-521
[3]  
Brzeziński T(1995)On twisted tensor products of algebras Commun. Algebra 23 4701-4735
[4]  
Majid S(2000)The factorization problem and the smash biproduct of algebras and coalgebras Algebr. Represent. Theory 3 19-42
[5]  
Cap A(2006)Non-commutative duplicates of finite sets J. Algebra Appl. 5 361-377
[6]  
Schichl H(2010)Factorization structures with a two-dimensional factor J. Lond. Math. Soc. (2) 81 1-23
[7]  
Vanžura J(1964)On the deformation of rings and algebras Ann. Math. (2) 79 59-103
[8]  
Caenepeel S(1999)Hochschild homology of twisted tensor products K-Theory 18 363-400
[9]  
Ion B(2010)Twisted planes Commun. Algebra 38 1930-1956
[10]  
Militaru G(2012)Non commutative truncated polynomial extensions J. Pure Appl. Algebra 216 2315-2337