Shell-model studies relevant for the low-energy Coulomb excitation in Zn isotopes

被引:0
作者
I. Ahmed
R. Kumar
K. Hadyńska-Klȩk
C. Qi
机构
[1] Inter-University Accelerator Centre,Nuclear Physics Group
[2] University of Warsaw,Heavy Ion Laboratory
[3] KTH Royal Institute of Technology,Department of Physics
来源
The European Physical Journal A | / 59卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The low-lying nuclear structure of even-even Zn isotopes ranging from 62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{62}$$\end{document}Zn to 70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{70}$$\end{document}Zn has been comprehensively examined through large scale shell model calculations. These calculations encompassed the f5/2p3/2,1/2g9/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{5/2}\textrm{p}_{3/2,1/2}\textrm{g}_{9/2}$$\end{document} (fpg) model space without any truncation, employing 56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{56}$$\end{document}Ni as an inert core. Two different effective interactions, JUN45 and jj44b, were utilized in these calculations. Various critical observables, including excitation energies, reduced transition strengths, and electric quadrupole moments, were computed and then evaluated in the context of existing experimental data. The configurations of the resulting wave functions were also thoroughly analyzed. Furthermore, occupation probabilities for distinct single-particle orbitals were determined, with particular attention given to the pivotal role of the g9/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{9/2}$$\end{document} orbital in elucidating the nuclear structure of heavy Zn isotopes. Additionally, rotational invariants were calculated for the ground state, shedding light on a prolate deformation in 62\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{62}$$\end{document}Zn and 64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{64}$$\end{document}Zn, while suggesting moderate prolate-triaxial excitations in 66\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{66}$$\end{document}Zn, 68\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{68}$$\end{document}Zn, and 70\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{70}$$\end{document}Zn. These findings hold significant relevance for interpreting the intriguing outcomes of sub-barrier Coulomb excitation experiments, offering invaluable insights into the static electromagnetic properties of the nucleus through a model-independent approach.
引用
收藏
相关论文
共 66 条
[1]  
Rocchini M(2023)undefined Phys. Rev. C 130 87-undefined
[2]  
Koizumi M(2003)undefined Eur. Phys. J. A 18 1127-undefined
[3]  
Simister DN(1978)undefined J. Phys. G: Nucl. Part. Phys. 4 20-undefined
[4]  
Gupta JB(2019)undefined Nucl. Phys. A 983 254-undefined
[5]  
Hamilton JH(2016)undefined Phys. Lett. B 754 137-undefined
[6]  
Ayangeakaa AD(2019)undefined Nucl. Phys. A 990 605-undefined
[7]  
Budaca R(2019)undefined Acta Phys. Pol., B 50 353-undefined
[8]  
Buganu P(2000)undefined Eur. Phys. J. A 9 1475-undefined
[9]  
Budaca AI(2001)undefined J. Phys. G: Nucl. Part. Phys. 27 646-undefined
[10]  
Leoni S(1990)undefined Nucl. Phys. A 519 177-undefined