SO(2) Symmetry of the Translating Solitons of the Mean Curvature Flow in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document}

被引:0
作者
Jingze Zhu
机构
[1] Columbia University,Department of Mathematics
关键词
Mean curvature flow; Soliton solution; Singularity analysis; Quasilinear parabolic PDE; 53E10;
D O I
10.1007/s40818-022-00120-x
中图分类号
学科分类号
摘要
In this paper, we prove that the translating solitons of the mean curvature flow in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} which arise as blow-up limit of embedded, mean convex mean curvature flow must have SO(2) symmetry.
引用
收藏
相关论文
共 35 条
[1]  
Andrews B(2012)Noncollapsing in mean-convex mean curvature flow Geom. Topol. 16 1413-1418
[2]  
Angenent S(2019)Unique asymptotics of ancient convex mean curvature flow solutions J. Differ. Geom. 111 381-455
[3]  
Daskalopoulos P(2020)Uniqueness of two-convex closed ancient solutions to the mean curvature flow Ann. Math. 192 353-436
[4]  
Sesum N(2020)On the existence of translating solutions of mean curvature flow in slab regions Anal. PDE 13 1051-1072
[5]  
Angenent S(2019)Uniqueness of convex ancient solutions to mean curvature flow in Invent. Math. 217 35-76
[6]  
Daskalopoulos P(2015)Uniqueness of blowups and łojasiewicz inequalities Ann. Math. 182 221-285
[7]  
Sesum N(1986)Four-manifolds with positive curvature operator J. Differ. Geom. 24 153-179
[8]  
Bourni T(2015)Uniqueness of the bowl soliton Geom. Topol. 19 2393-2406
[9]  
Langford M(2016)Ancient solutions of the mean curvature flow Commun. Anal. Geom. 24 593-604
[10]  
Tinaglia G(2017)Mean curvature flow of mean convex hypersurfaces Commun. Pure Appl. Math. 70 511-546