Twistor Lifts and Factorization for Conformal Maps from a Surface to the Euclidean Four-space

被引:0
作者
Kazuyuki Hasegawa
Katsuhiro Moriya
机构
[1] Kanazawa University,Faculty of Teacher Education, Institute of Human and Social Sciences
[2] University of Tsukuba,Division of Mathematics, Faculty of Pure and Applied Sciences
来源
Advances in Applied Clifford Algebras | 2017年 / 27卷
关键词
Conformal map; Twistor space; Super-conformal map; Primary 53A07; Secondary 53C28; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
A conformal map from a Riemann surface to the Euclidean four-space is explained in terms of its twistor lift. A local factorization of a differential of a conformal map is obtained. As an application, the factorization of a differential provides an upper bound of the area of a super-conformal map around a branch point.
引用
收藏
页码:1243 / 1262
页数:19
相关论文
共 19 条
[1]  
Bayard P.(2013)Spinorial representation of surfaces into 4-dimensional space forms Ann. Glob. Ana.l Geom. 44 433-453
[2]  
Lawn M.(2012)Conformal maps from a 2-torus to the 4-sphere J. Reine Angew. Math. 671 1-30
[3]  
Roth J.(1982)Conformal and minimal immersions of compact surfaces into the 4-sphere J. Diff. Geom. 17 455-473
[4]  
Bohle C.(1997)On twistor harmonic surfaces in the complex projective plane Math. Proc. Cambridge Philos. Soc. 122 115-129
[5]  
Leschke K.(1864)Analytisch-geometrische Untersuchungen Z. Math. Phys. 9 96-125
[6]  
Pedit F.(2001)Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic 2-tori Invent. Math. 146 507-593
[7]  
Pinkall U.(1984)On surfaces in four-spaces Ann. Global Anal. Geom. 2 257-287
[8]  
Bryant R. L.(2008)The denominators of Lagrangian surfaces in complex Euclidean plane Ann. Global Anal. Geom. 34 1-20
[9]  
Castro I.(2009)Super-conformal surfaces associated with null complex holomorphic curves Bull. Lond. Math. Soc. 41 327-331
[10]  
Urbano F.(2015)A factorization of a super-conformal map Israel J. Math. 207 331-359