The hydrostatic approximation for the primitive equations by the scaled Navier–Stokes equations under the no-slip boundary condition

被引:0
作者
Ken Furukawa
Yoshikazu Giga
Takahito Kashiwabara
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
[2] RIKEN,undefined
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Hydrostatic approximation; Scaled Navier–Stokes equations; Maximal regularity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we justify the hydrostatic approximation of the primitive equations in maximal Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-settings in the three-dimensional layer domain Ω=T2×(-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega = \mathbb {T} ^2 \times (-1, 1)$$\end{document} under the no-slip (Dirichlet) boundary condition in any time interval (0, T) for T>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T>0$$\end{document}. We show that the solution to the ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-scaled Navier–Stokes equations with Besov initial data u0∈Bq,ps(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0 \in B^{s}_{q,p}(\varOmega )$$\end{document} for s>2-2/p+1/q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s > 2 - 2/p + 1/ q$$\end{document} converges to the solution to the primitive equations with the same initial data in E1(T)=W1,p(0,T;Lq(Ω))∩Lp(0,T;W2,q(Ω))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_1 (T) = W^{1, p}(0, T ; L^q (\varOmega )) \cap L^p(0, T ; W^{2, q} (\varOmega )) $$\end{document} with order O(ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\epsilon )$$\end{document}, where (p,q)∈(1,∞)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p,q) \in (1,\infty )^2$$\end{document} satisfies 1p≤min(1-1/q,3/2-2/q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{p} \le \min ( 1 - 1/q, 3/2 - 2/q ) $$\end{document} and ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} has the length scale. The global well-posedness of the scaled Navier–Stokes equations by ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} in E1(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {E}_1 (T)$$\end{document} is also proved for sufficiently small ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}. Note that T=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T = \infty $$\end{document} is included.
引用
收藏
页码:3331 / 3373
页数:42
相关论文
共 32 条
  • [1] Abels H(2002)Boundedness of imaginary powers of the Stokes operator in an infinite layer J. Evol. Equ. 2 439-457
  • [2] Azérad P(2001)Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics SIAM J. Math. Anal. 33 847-859
  • [3] Guillén F(1990)Some results about complex powers of closed operators J. Math. Anal. Appl. 149 124-136
  • [4] Dore G(2005)An Acta Math. 195 21-53
  • [5] Venni A(1969)-approach to Stokes and Navier-Stokes equations in general domains J. Math. Soc. Japan 21 481-522
  • [6] Farwig R(1985)On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators Arch. Rational Mech. Anal. 89 251-265
  • [7] Kozono H(2020)Domains of fractional powers of the Stokes operator in Math. Nachr. 293 284-304
  • [8] Sohr H(2017) spaces Proc. Amer. Math. Soc. 145 3865-3876
  • [9] Fujiwara D(1991)Analyticity of solutions to the primitive equations J. Funct. Anal. 102 72-94
  • [10] Giga Y(2001)Bounded Differential Integral Equations 14 1381-1408