Implementation of model explainability for a basic brain tumor detection using convolutional neural networks on MRI slices

被引:0
作者
Paul Windisch
Pascal Weber
Christoph Fürweger
Felix Ehret
Markus Kufeld
Daniel Zwahlen
Alexander Muacevic
机构
[1] European CyberKnife Center,Department of Radiation Oncology
[2] Kantonsspital Winterthur,Department of Stereotaxy and Functional Neurosurgery
[3] University of Cologne,undefined
[4] Faculty of Medicine and University Hospital Cologne,undefined
来源
Neuroradiology | 2020年 / 62卷
关键词
Deep learning; Explainability; Machine learning; Artificial intelligence; Gliobastoma; Vestibular Schwannoma;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1515 / 1518
页数:3
相关论文
共 57 条
  • [1] El Jundi B(2009)The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis Front Syst Neurosci 3 21-740
  • [2] Heinze S(2019)Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study Lancet Oncol 20 728-23
  • [3] Lenschow C(2018)Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma Sci Rep 8 12516-820
  • [4] Kickingereder P(2016)Can we open the black box of AI? Nature 538 20-1057
  • [5] Isensee F(2016)The 2016 World Health Organization classification of tumors of the central nervous system: a summary Acta Neuropathol 131 803-undefined
  • [6] Tursunova I(2013)The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository J Digit Imaging 26 1045-undefined
  • [7] Petersen J(undefined)undefined undefined undefined undefined-undefined
  • [8] Neuberger U(undefined)undefined undefined undefined undefined-undefined
  • [9] Bonekamp D(undefined)undefined undefined undefined undefined-undefined
  • [10] Brugnara G(undefined)undefined undefined undefined undefined-undefined