2D transition metal dichalcogenides

被引:0
|
作者
Sajedeh Manzeli
Dmitry Ovchinnikov
Diego Pasquier
Oleg V. Yazyev
Andras Kis
机构
[1] Electrical Engineering Institute,
[2] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[3] Institute of Materials Science and Engineering,undefined
[4] École Polytechnique Fédérale de Lausanne (EPFL),undefined
[5] Institute of Physics,undefined
[6] École Polytechnique Fédérale de Lausanne (EPFL),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin–orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.
引用
收藏
相关论文
共 50 条
  • [41] Tandem Photovoltaics from 2D Transition Metal Dichalcogenides on Silicon
    Hu, Zekun
    Wang, Sudong
    Lynch, Jason
    Jariwala, Deep
    ACS PHOTONICS, 2024, 11 (11): : 4616 - 4625
  • [42] Recent progress of flexible electronics by 2D transition metal dichalcogenides
    Zheng, Lu
    Wang, Xuewen
    Jiang, Hanjun
    Xu, Manzhang
    Huang, Wei
    Liu, Zheng
    NANO RESEARCH, 2022, 15 (03) : 2413 - 2432
  • [43] Overcoming the thermodynamic barrier of alloying 2D transition metal dichalcogenides
    Alboteanu, Guy
    Ya'akobovitz, Assaf
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [44] Making clean electrical contacts on 2D transition metal dichalcogenides
    Wang, Yan
    Chhowalla, Manish
    NATURE REVIEWS PHYSICS, 2022, 4 (02) : 101 - 112
  • [45] Electrostatic Potential Anomaly in 2D Janus Transition Metal Dichalcogenides
    Lian, Ji-Chun
    Huang, Wei-Qing
    Hu, Wangyu
    Huang, Gui-Fang
    ANNALEN DER PHYSIK, 2019, 531 (12)
  • [46] Atomic Fracture Mechanism in Suspended 2D Transition Metal Dichalcogenides
    Ma, Yinhang
    Luo, Ruichun
    Tian, Shihao
    Ji, Yujin
    Pennycook, Stephen J.
    Liu, Yuanyue
    Yuan, Quanzi
    Zhou, Wu
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (51)
  • [47] Engineering anisotropy in 2D transition metal dichalcogenides via heterostructures
    Wu, Biao
    Xie, Xing
    Zheng, Haihong
    Li, Shaofei
    Ding, Junnan
    He, Jun
    Liu, Zongwen
    Liu, Yanping
    OPTICS LETTERS, 2023, 48 (22) : 5867 - 5870
  • [48] Various Structures of 2D Transition-Metal Dichalcogenides and Their Applications
    Wei, Zhongming
    Li, Bo
    Xia, Congxin
    Cui, Yu
    He, Jun
    Xia, Jian-Bai
    Li, Jingbo
    SMALL METHODS, 2018, 2 (11):
  • [49] Direct synthesis of metastable phases of 2D transition metal dichalcogenides
    Sokolikova, Maria S.
    Mattevi, Cecilia
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) : 3952 - 3980
  • [50] 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis
    Fu, Qiang
    Han, Jiecai
    Wang, Xianjie
    Xu, Ping
    Yao, Tai
    Zhong, Jun
    Zhong, Wenwu
    Liu, Shengwei
    Gao, Tangling
    Zhang, Zhihua
    Xu, Lingling
    Song, Bo
    ADVANCED MATERIALS, 2021, 33 (06)