Global existence and boundedness in a 3D Keller–Segel–Stokes system with nonlinear diffusion and rotational flux

被引:2
作者
Yingping Peng
Zhaoyin Xiang
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Global existence; Boundedness; Keller–Segel–Stokes system; Nonlinear diffusion; Tensor-valued sensitivity; 35K55; 35Q92; 35Q35; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the 3D Keller–Segel–Stokes (K–S–S) system with nonlinear diffusion term Δnm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta n^{m}$$\end{document} (m>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document}) and rotational flux posed in a bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with smooth boundary. Under the assumption that the Frobenius norm of the tensor-valued chemotactic sensitivity S(x, n, c) satisfies |S(x,n,c)|≤CS(1+n)-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S(x,n,c)|\le C_{S}(1+n)^{-\alpha }$$\end{document}, by seeking some new functionals and using the bootstrap arguments on the regularized system, we establish the existence and boundedness of global weak solutions to K–S–S system for arbitrarily large initial data under the assumption m+2α>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m+2\alpha >2$$\end{document} and m>34\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>\frac{3}{4}$$\end{document}, which includes both the degenerate (m>1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m>1)$$\end{document} and the singular (m<1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m<1)$$\end{document} case.
引用
收藏
相关论文
共 83 条
[1]  
Bellomo N(2015)Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues Math. Models Methods Appl. Sci. 25 1663-1763
[2]  
Bellouquid A(2014)Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation Nonlinearity 27 1899-1913
[3]  
Tao Y(2013)Existence of smooth solutions to coupled chemotaxis-fluid equations Discrete Contin. Dyn. Syst. 33 2271-2297
[4]  
Winkler M(2014)Global existence and temporal decay in Keller–Segel models coupled to fluid equations Commun. Partial Differ. Equ. 39 1205-1235
[5]  
Cao X(2012)Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions J. Differ. Equ. 252 5832-5851
[6]  
Ishida S(2015)New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models J. Differ. Equ. 258 2080-2113
[7]  
Chae M(2010)Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior Discrete Contin. Dyn. Syst. 28 1437-1453
[8]  
Kang K(2010)Global solutions to the coupled chemotaxis-fluid equations Commun. Partial Differ. Equ. 35 1635-1673
[9]  
Lee J(2014)A note on global existence for the chemotaxis Stokes model with nonlinear diffusion Int. Math. Res. Not. 2014 1833-1852
[10]  
Chae M(2009)A user’s guide to PDE models for chemotaxis J. Math. Biol. 58 183-217