Blow-up in p-Laplacian heat equations with nonlinear boundary conditions

被引:0
作者
Juntang Ding
Xuhui Shen
机构
[1] Shanxi University,School of Mathematical Sciences
[2] Beijing Institute of Technology,State Key Laboratory of Explosion Science and Technology
来源
Zeitschrift für angewandte Mathematik und Physik | 2016年 / 67卷
关键词
-Laplacian heat equation; Blow-up; Upper bound; Lower bound; 35K55; 35K60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the blow-up of solutions to the following p-Laplacian heat equations with nonlinear boundary conditions: h(u)t=∇·(|∇u|p∇u)+k(t)f(u)inΩ×(0,t∗),|∇u|p∂u∂n=g(u)on∂Ω×(0,t∗),u(x,0)=u0(x)≥0inΩ¯,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{l@{\quad}l}\left(h(u)\right)_t =\nabla\cdot(|\nabla u|^{p}\nabla u)+k(t)f(u)\,&{\rm in }\, \Omega\times(0,t^{*}), \\ |\nabla u|^{p}\frac{\partial u}{\partial n}=g(u)\,\, &{\rm on}\, \partial\Omega\times(0,t^{*}), \\ u({\rm x},0)=u_{0}(x) \geq 0\, & {\rm in }\, \overline{\Omega},\end{array}\right.$$\end{document}where p≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p \geq 0}$$\end{document} and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} is a bounded convex domain in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N \geq 2}$$\end{document} with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial\Omega}$$\end{document}. By constructing suitable auxiliary functions and using a first-order differential inequality technique, we establish the conditions on the nonlinearities and data to ensure that the solution u(x, t) blows up at some finite time. Moreover, the upper and lower bounds for the blow-up time, when blow-up does occur, are obtained.
引用
收藏
相关论文
共 30 条
[1]  
Ball J.M.(1977)Remarks on blow-up and nonexistence theorems for nonlinear evolution equations Q. J. Math. Oxf. 28 473-486
[2]  
Ding J.T.(2016)Blow-up and global solutions for a class of nonlinear reaction diffusion equations under Dirichlet boundary conditions J. Math. Anal. Appl. 433 1718-1735
[3]  
Hu H.J.(2012)Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary J. Math. Anal. Appl. 385 1005-1014
[4]  
Li F.S.(2014)Global existence and blow-up phenomena for Bound. Value. Probl. 219 1-14
[5]  
Li J.L.(2014)-Laplacian heat equation with inhomogeneous Neumann boundary conditions Math. Methods Appl. Sci. 37 1019-1028
[6]  
Li F.S.(2012)Bounds of the blow-up time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition Discrete Contin. Dyn. Syst. 11 4001-4014
[7]  
Li J.L.(2012)Blow-up phenomena in reaction–diffusion systems Appl. Anal. 91 2245-2256
[8]  
Lv X.S.(2008)Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions J. Math. Anal. Appl. 338 438-447
[9]  
Song X.F.(2010)Bounds for blow-up time in nonlinear parabolic problems I. Z. Angew. Math. Phys. 61 999-1007
[10]  
Marras M.(2010)Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition Nonlinear Anal 73 971-978