The effect of coronary calcification on diagnostic performance of machine learning–based CT-FFR: a Chinese multicenter study

被引:0
|
作者
Meng Di Jiang
Xiao Lei Zhang
Hui Liu
Chun Xiang Tang
Jian Hua Li
Yi Ning Wang
Peng Peng Xu
Chang Sheng Zhou
Fan Zhou
Meng Jie Lu
Jia Yin Zhang
Meng Meng Yu
Yang Hou
Min Wen Zheng
Bo Zhang
Dai Min Zhang
Yan Yi
Lei Xu
Xiu Hua Hu
Jian Yang
Guang Ming Lu
Qian Qian Ni
Long Jiang Zhang
机构
[1] Jinling Hospital,Department of Medical Imaging
[2] Medical School of Nanjing University,Department of Radiology
[3] Guangdong General Hospital,Department of Cardiology
[4] Jinling Hospital,Department of Radiology
[5] Medical School of Nanjing University,Institute of Diagnostic and Interventional Radiology and Department of Cardiology
[6] Peking Union Medical College Hospital,Department of Radiology
[7] Chinese Academy of Medical Sciences and Peking Union Medical College,Department of Radiology
[8] Shanghai Jiao Tong University Affiliated Sixth People’s Hospital,Department of Radiology
[9] Shengjing Hospital of China Medical University,Department of Cardiology
[10] Xijing Hospital,Department of Radiology
[11] Fourth Military Medical University,Department of Radiology
[12] Jiangsu Taizhou People’s Hospital,Department of Radiology
[13] Nanjing First Hospital,undefined
[14] Nanjing Medical University,undefined
[15] Beijing Anzhen Hospital,undefined
[16] Capital Medical University,undefined
[17] Shaoyifu Hospital Affiliated to Medical College of Zhejiang University,undefined
[18] the First Affiliated Hospital of Medical School,undefined
[19] Xi’an Jiaotong University,undefined
来源
European Radiology | 2021年 / 31卷
关键词
Computed tomography angiography; Coronary disease; Calcium; Ischemia; Data accuracy;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1482 / 1493
页数:11
相关论文
共 50 条
  • [1] The effect of coronary calcification on diagnostic performance of machine learning-based CT-FFR: a Chinese multicenter study
    Di Jiang, Meng
    Zhang, Xiao Lei
    Liu, Hui
    Tang, Chun Xiang
    Li, Jian Hua
    Wang, Yi Ning
    Xu, Peng Peng
    Zhou, Chang Sheng
    Zhou, Fan
    Lu, Meng Jie
    Zhang, Jia Yin
    Yu, Meng Meng
    Hou, Yang
    Zheng, Min Wen
    Zhang, Bo
    Zhang, Dai Min
    Yi, Yan
    Xu, Lei
    Hu, Xiu Hua
    Yang, Jian
    Lu, Guang Ming
    Ni, Qian Qian
    Zhang, Long Jiang
    EUROPEAN RADIOLOGY, 2021, 31 (03) : 1482 - 1493
  • [2] Effect of Coronary Calcification Severity on Measurements and Diagnostic Performance of CT-FFR With Computational Fluid Dynamics: Results From CT-FFR CHINA Trial
    Zhao, Na
    Gao, Yang
    Xu, Bo
    Yang, Weixian
    Song, Lei
    Jiang, Tao
    Xu, Li
    Hu, Hongjie
    Li, Lin
    Chen, Wenqiang
    Li, Dumin
    Zhang, Feng
    Fan, Lijuan
    Lu, Bin
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 8
  • [3] Influence of Coronary Calcium on Diagnostic Performance of Machine Learning CT-FFR Results From MACHINE Registry
    Tesche, Christian
    Otani, Katharina
    De Cecco, Carlo N.
    Coenen, Adriaan
    De Geer, Jakob
    Kruk, Mariusz
    Kim, Young-Hak
    Albrecht, Moritz H.
    Baumann, Stefan
    Renker, Matthias
    Bayer, Richard R.
    Duguay, Taylor M.
    Litwin, Sheldon E.
    Varga-Szemes, Akos
    Steinberg, Daniel H.
    Yang, Dong Hyun
    Kepka, Cezary
    Persson, Anders
    Nieman, Koen
    Schoepf, U. Joseph
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (03) : 760 - 770
  • [4] Diagnostic Performance of Machine Learning Based CT-FFR in Detecting Ischemia in Myocardial Bridging and Concomitant Proximal Atherosclerotic Disease
    Zhou, Fan
    Wang, Yi Ning
    Schoepf, U. Joseph
    Tesche, Christian
    Tang, Chun Xiang
    Zhou, Chang Sheng
    Xu, Lei
    Hou, Yang
    Zheng, Min Wen
    Yan, Jing
    Lu, Meng Jie
    Lu, Guang Ming
    Zhang, Dai Min
    Zhang, Bo
    Zhang, Jia Yin
    Zhang, Long Jiang
    CANADIAN JOURNAL OF CARDIOLOGY, 2019, 35 (11) : 1523 - 1533
  • [5] CT morphological index provides incremental value to machine learning based CT-FFR for predicting hemodynamically significant coronary stenosis
    Yu, Mengmeng
    Lu, Zhigang
    Li, Wenbin
    Wei, Meng
    Yan, Jing
    Zhang, Jiayin
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2018, 265 : 256 - 261
  • [6] Functional cardiac CT-Going beyond Anatomical Evaluation of Coronary Artery Disease with Cine CT, CT-FFR, CT Perfusion and Machine Learning
    Peper, Joyce
    Sucha, Dominika
    Swaans, Martin
    Leiner, Tim
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1113)
  • [7] Machine learning based ischemia-specific stenosis prediction: A Chinese multicenter coronary CT angiography study
    Zhang, Xiao Lei
    Zhang, Bo
    Tang, Chun Xiang
    Wang, Yi Ning
    Zhang, Jia Yin
    Yu, Meng Meng
    Hou, Yang
    Zheng, Min Wen
    Zhang, Dai Min
    Hu, Xiu Hua
    Xu, Lei
    Liu, Hui
    Sun, Zhi Yuan
    Zhang, Long Jiang
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 168
  • [8] Diagnostic efficacy of CCTA and CT-FFR based on risk factors for myocardial ischemia
    Gao Yongguang
    Shi Yibing
    Xia Ping
    Zhang Jinyao
    Fu Yufei
    Huang Yayong
    Xu Yuanshun
    Li Gutao
    JOURNAL OF CARDIOTHORACIC SURGERY, 2022, 17 (01)
  • [9] Diagnostic Performance of CCTA and CT-FFR for the Detection of CAD in TAVR Work-Up
    Peper, Joyce
    Becker, Leonie M.
    van den Berg, Hans
    Bor, Willem L.
    Brouwer, Jorn
    Nijenhuis, Vincent J.
    Van Ginkel, Dirk-Jan
    Rensing, Benno J. M. W.
    ten Berg, Jurrien M.
    Timmers, Leo
    Leiner, Tim
    Swaans, Martin J.
    JACC-CARDIOVASCULAR INTERVENTIONS, 2022, 15 (11) : 1140 - 1149
  • [10] Diagnostic and prognostic performance of artificial intelligence-based fully-automated on-site CT-FFR in patients with CAD
    Guo, Bangjun
    Jiang, Mengchun
    Guo, Xiang
    Tang, Chunxiang
    Zhong, Jian
    Lu, Mengjie
    Liu, Chunyu
    Zhang, Xiaolei
    Qiao, Hongyan
    Zhou, Fan
    Xu, Pengpeng
    Xue, Yi
    Zheng, Minwen
    Hou, Yang
    Wang, Yining
    Zhang, Jiayin
    Zhang, Bo
    Zhang, Daimin
    Xu, Lei
    Hu, Xiuhua
    Zhou, Changsheng
    Li, Jianhua
    Yang, Zhiwen
    Mao, Xinsheng
    Lu, Guangming
    Zhang, Longjiang
    SCIENCE BULLETIN, 2024, 69 (10) : 1472 - 1485