Properties of normal harmonic mappings

被引:0
作者
Hua Deng
Saminathan Ponnusamy
Jinjing Qiao
机构
[1] Hebei University,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Normal functions; Normal harmonic mappings; Spherical derivative; Maximum principle; Primary 30D45; 31A05; Secondary 30G30; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present several necessary and sufficient conditions for a harmonic mapping to be normal. Also, we discuss maximum principle and five-point theorem for normal harmonic mappings. Furthermore, we investigate the convergence of sequences for sense-preserving normal harmonic mappings and show that the asymptotic values and angular limits are identical for normal harmonic mappings.
引用
收藏
页码:605 / 621
页数:16
相关论文
共 50 条
[41]   The number of components of complements to level surfaces of partially harmonic polynomials [J].
V. N. Karpushkin .
Mathematical Notes, 1997, 62 :697-700
[42]   Hardy–Littlewood Inequalities for Fractional Derivatives of Invariant Harmonic Functions [J].
Guangbin Ren ;
Uwe Kähler ;
Jihuai Shi ;
Congwen Liu .
Complex Analysis and Operator Theory, 2012, 6 :373-396
[43]   The maximum principle and the Dirichlet problem for Dirac-harmonic maps [J].
Qun Chen ;
Jürgen Jost ;
Guofang Wang .
Calculus of Variations and Partial Differential Equations, 2013, 47 :87-116
[44]   The number of components of complements to level surfaces of partially harmonic polynomials [J].
Karpushkin, VN .
MATHEMATICAL NOTES, 1997, 62 (5-6) :697-700
[45]   The maximum principle and the Dirichlet problem for Dirac-harmonic maps [J].
Chen, Qun ;
Jost, Juergen ;
Wang, Guofang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (1-2) :87-116
[46]   Results on meromorphic φ-normal functions [J].
Aulaskari, Rauno ;
Makhmutov, Shamil ;
Rattya, Jouni .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (09) :855-863
[47]   Normal Functions and Shared Sets [J].
Xu, Yan ;
Qiu, Huiling .
FILOMAT, 2016, 30 (02) :287-292
[48]   On a theorem of Privalov and normal functions [J].
Girela, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (02) :433-442
[49]   Boundedness of derivatives and φ-normal functions [J].
Lal, Banarsi ;
Singh, Virender .
FILOMAT, 2024, 38 (13) :4485-4493