Properties of normal harmonic mappings

被引:0
作者
Hua Deng
Saminathan Ponnusamy
Jinjing Qiao
机构
[1] Hebei University,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Normal functions; Normal harmonic mappings; Spherical derivative; Maximum principle; Primary 30D45; 31A05; Secondary 30G30; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present several necessary and sufficient conditions for a harmonic mapping to be normal. Also, we discuss maximum principle and five-point theorem for normal harmonic mappings. Furthermore, we investigate the convergence of sequences for sense-preserving normal harmonic mappings and show that the asymptotic values and angular limits are identical for normal harmonic mappings.
引用
收藏
页码:605 / 621
页数:16
相关论文
共 50 条
[31]   REMARKS ON THE GRADIENT OF AN INFINITY-HARMONIC FUNCTION [J].
Bhattacharya, Tilak .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
[32]   Representations for the Bloch Type Semi-norm of Fréchet Differentiable Mappings [J].
Marijan Marković .
The Journal of Geometric Analysis, 2021, 31 :7947-7967
[33]   Gauss maps of harmonic and minimal great circle fibrations [J].
Fourtzis, Ioannis ;
Markellos, Michael ;
Savas-Halilaj, Andreas .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2023, 63 (02)
[34]   On φ-normal meromorphic functions [J].
Lal, Banarsi ;
Singh, Virender .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) :1277-1287
[35]   Variational Quasi-Harmonic Maps for Computing Diffeomorphisms [J].
Wang, Yu ;
Guo, Minghao ;
Solomon, Justin .
ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04)
[36]   On convexity of level sets of p-harmonic functions [J].
Zhang, Ting ;
Zhang, Wei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (07) :2065-2081
[37]   Gauss maps of harmonic and minimal great circle fibrations [J].
Ioannis Fourtzis ;
Michael Markellos ;
Andreas Savas-Halilaj .
Annals of Global Analysis and Geometry, 2023, 63
[38]   On the φ-Normal Meromorphic Functions [J].
Yang, Liu .
FILOMAT, 2018, 32 (17) :5949-5956
[39]   On strongly normal functions [J].
Chen, HH ;
Gauthier, PM .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1996, 39 (04) :408-419
[40]   A Schwarz lemma and a Liouville theorem for generalized harmonic maps [J].
Chen, Qun ;
Li, Kaipeng ;
Qiu, Hongbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214