Properties of normal harmonic mappings

被引:0
作者
Hua Deng
Saminathan Ponnusamy
Jinjing Qiao
机构
[1] Hebei University,Department of Mathematics
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Monatshefte für Mathematik | 2020年 / 193卷
关键词
Normal functions; Normal harmonic mappings; Spherical derivative; Maximum principle; Primary 30D45; 31A05; Secondary 30G30; 30H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present several necessary and sufficient conditions for a harmonic mapping to be normal. Also, we discuss maximum principle and five-point theorem for normal harmonic mappings. Furthermore, we investigate the convergence of sequences for sense-preserving normal harmonic mappings and show that the asymptotic values and angular limits are identical for normal harmonic mappings.
引用
收藏
页码:605 / 621
页数:16
相关论文
共 50 条
[21]   On VT-harmonic maps [J].
Qun Chen ;
Jürgen Jost ;
Hongbing Qiu .
Annals of Global Analysis and Geometry, 2020, 57 :71-94
[22]   ON THE MAXIMUM PRINCIPLE FOR HARMONIC FUNCTIONS [J].
Vagharshakyan, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (03) :325-337
[23]   One-to-one piecewise linear mappings over triangulations [J].
Floater, MS .
MATHEMATICS OF COMPUTATION, 2003, 72 (242) :685-696
[24]   Representations for the Bloch Type Semi-norm of Frechet Differentiable Mappings [J].
Markovic, Marijan .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) :7947-7967
[25]   MAXIMUM PRINCIPLE AND COMPARISON PRINCIPLE OF p-HARMONIC FUNCTIONS VIA p-HARMONIC BOUNDARY OF GRAPHS [J].
Lee, Yong Hah .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) :1241-1250
[26]   The α-normal functions [J].
Xu, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (3-4) :357-363
[27]   On harmonic analysis related with the generalized Dunkl operator [J].
Bouzeffour, Fethi ;
Nemri, Akram ;
Fitouhi, Ahmed ;
Ghazouani, Sami .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (08) :609-625
[28]   Boundary singularities of N-harmonic functions [J].
Borghol, Rouba ;
Veron, Laurent .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (06) :1001-1015
[29]   A Schwarz lemma of harmonic maps into metric spaces [J].
Wang, Jie .
ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (11) :5966-5974
[30]   On Some Types of Boundary Points of Harmonic Functions [J].
Berberyan, S. L. .
RUSSIAN MATHEMATICS, 2014, 58 (05) :1-7