Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [31] An alternative approach for particle swarm optimisation using serendipity
    Procopio Paiva, Fabio Augusto
    Ferreira Costa, Jose Alfredo
    Muniz Silva, Claudio Rodrigues
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 11 (02) : 81 - 90
  • [32] Diversity Preservation Using Excited Particle Swarm Optimisation
    Pace, Shannon S.
    Woodward, Clinton J.
    GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, : 61 - 68
  • [33] Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation
    Tholen, Christoph
    Nolle, Lars
    ARTIFICIAL INTELLIGENCE XXXIV, AI 2017, 2017, 10630 : 384 - 396
  • [34] Particle swarm optimisation: time for uniformisation
    Luis Fernandez-Martinez, Juan
    Garcia-Gonzalo, Esperanza
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2013, 4 (01) : 16 - 33
  • [35] Stochastic stability of particle swarm optimisation
    Erskine, Adam
    Joyce, Thomas
    Herrmann, J. Michael
    SWARM INTELLIGENCE, 2017, 11 (3-4) : 295 - 315
  • [36] Profit optimisation of the multiple-vacation machine repair problem using particle swarm optimisation
    Wang, Kuo-Hsiung
    Liou, Cheng-Dar
    Wang, Ya-Lin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2014, 45 (08) : 1769 - 1780
  • [37] Stochastic stability of particle swarm optimisation
    Adam Erskine
    Thomas Joyce
    J. Michael Herrmann
    Swarm Intelligence, 2017, 11 : 295 - 315
  • [38] Parameter co-evolution mechanism of particle swarm optimisation algorithm
    Zhao M.
    Song X.
    Gao Y.
    International Journal of Simulation and Process Modelling, 2020, 15 (03) : 255 - 267
  • [39] An improved diversity-guided particle swarm optimisation for numerical optimisation
    Wang, Wenjun
    Wang, Hui
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2014, 5 (01) : 16 - 26
  • [40] A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
    Thida, Myo
    Eng, How-Lung
    Monekosso, Dorothy N.
    Remagnino, Paolo
    APPLIED SOFT COMPUTING, 2013, 13 (06) : 3106 - 3117