Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [21] An optimal rough fuzzy clustering algorithm using particle swarm optimisation
    Anuradha, J.
    Tripathy, B. K.
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2015, 7 (04) : 257 - 275
  • [22] Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges
    Mhalhel, Kamel
    Levanti, Maria
    Abbate, Francesco
    Laura, Rosaria
    Guerrera, Maria Cristina
    Aragona, Marialuisa
    Porcino, Caterina
    Briglia, Marilena
    Germana, Antonino
    Montalbano, Giuseppe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [23] Predicting aquaculture waste from gilthead seabream (Sparus aurata) culture using a nutritional approach
    Lupatsch, I
    Kissil, GW
    AQUATIC LIVING RESOURCES, 1998, 11 (04) : 265 - 268
  • [24] Multi-region particle swarm optimisation algorithm
    Fan J.-S.
    Fan, J.-S. (fjsszw2005@126.com), 2012, Inderscience Publishers (44) : 117 - 123
  • [25] Plastic Responses of Gilthead Seabream Sparus aurata to Wild and Aquaculture Pressured Environments
    Talijancic, Igor
    Zuzul, Iva
    Kiridzija, Viktorija
    Siljic, Jasna
    Pleadin, Jelka
    Grubisic, Leon
    Segvic-Bubic, Tanja
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [26] Hybrid particle swarm optimisation algorithm for image segmentation
    Zhang, Jian-de
    Lu, Jin-gui
    Li, Hong-liang
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 14 (04) : 317 - 323
  • [27] Multi-region particle swarm optimisation algorithm
    Fan, Ji-Shan
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2012, 44 (02) : 117 - 123
  • [28] A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm
    Ab Aziz, Nor Azlina
    Mubin, Marizan
    Mohamad, Mohd Saberi
    Ab Aziz, Kamarulzaman
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [29] A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems
    Wang, Hongfeng
    Yang, Shengxiang
    Ip, W. H.
    Wang, Dingwei
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (07) : 1268 - 1283
  • [30] Reliability optimisation method for intelligent manufacturing systems based on particle swarm optimisation algorithm
    Ren, Li
    Li, Juchen
    International Journal of Modelling, Identification and Control, 2024, 45 (04) : 200 - 210