Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [21] Optimisation of integrated process planning and scheduling using a particle swarm optimisation approach
    Guo, Y. W.
    Li, W. D.
    Mileham, A. R.
    Owen, G. W.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (14) : 3775 - 3796
  • [22] Development of Explicit Neural Predictive Control Algorithm Using Particle Swarm Optimisation
    Lawrynczuk, Maciej
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2013, 7894 : 130 - 139
  • [23] Availability optimisation of heat treatment process using particle swarm optimisation approach
    Kumar A.
    Punia D.S.
    International Journal of Industrial and Systems Engineering, 2023, 45 (04) : 432 - 457
  • [24] Distributed resource allocation optimisation algorithm based on particle swarm optimisation in wireless sensor network
    Hao, Xiaochen
    Yao, Ning
    Wang, Jiaojiao
    Wang, Liyuan
    IET COMMUNICATIONS, 2020, 14 (17) : 2990 - 2999
  • [25] A hybrid genetically-bacterial foraging algorithm converged by particle swarm optimisation for global optimisation
    Jain, Tushar
    Nigam, M. J.
    Alavandar, Srinivasan
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (05) : 340 - 348
  • [26] A hybrid cooperative cuckoo search algorithm with particle swarm optimisation
    Wang, Lijin
    Zhong, Yiwen
    Yin, Yilong
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2015, 6 (01) : 18 - 29
  • [27] Application of particle swarm optimisation algorithm in manipulator compliance control
    Guo, Kai
    Bai, Zhi
    Ma, Zhilin
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 18 (02) : 113 - 127
  • [28] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71
  • [29] A hierarchical particle swarm optimisation algorithm for cloud computing environment
    Ti, Yen-Wu
    Chen, Shang-Kuan
    Wang, Wen-Cheng
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTER SECURITY, 2022, 18 (1-2) : 12 - 26
  • [30] Particle swarm optimisation strategies for IOL formula constant optimisation
    Langenbucher, Achim
    Szentmary, Nora
    Cayless, Alan
    Wendelstein, Jascha
    Hoffmann, Peter
    ACTA OPHTHALMOLOGICA, 2023, 101 (07) : 775 - 782