Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [1] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Llorente, Ignacio
    Luna, Ladislao
    AQUACULTURE INTERNATIONAL, 2014, 22 (06) : 1837 - 1849
  • [2] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Optimisation of a fermentation process for butanol production by particle swarm optimisation (PSO)
    Mariano, Adriano Pinto
    Borba Costa, Caliane Bastos
    de Angelis, Dejanira de Franceschi
    Maugeri Filho, Francisco
    Pires Atala, Daniel Ibraim
    Wolf Maciel, Maria Regina
    Maciel Filho, Rubens
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2010, 85 (07) : 934 - 949
  • [4] Particle swarm optimisation algorithm with forgetting character
    Yuan, Dai-lin
    Chen, Qiu
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 59 - 64
  • [5] Particle swarm optimisation algorithm for radio frequency identification network topology optimisation
    Zhang, Li
    Lu, Jin-gui
    Chen, Lei
    Zhang, Jian-de
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2011, 6 (1-2) : 16 - 23
  • [6] Continuous function optimisation using a hybrid split particle swarm algorithm
    Oliveira, PBD
    INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, : 81 - 85
  • [7] Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges
    Mhalhel, Kamel
    Levanti, Maria
    Abbate, Francesco
    Laura, Rosaria
    Guerrera, Maria Cristina
    Aragona, Marialuisa
    Porcino, Caterina
    Briglia, Marilena
    Germana, Antonino
    Montalbano, Giuseppe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (10)
  • [8] An optimal rough fuzzy clustering algorithm using particle swarm optimisation
    Anuradha, J.
    Tripathy, B. K.
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2015, 7 (04) : 257 - 275
  • [9] Optimization of suspension system using particle swarm optimisation and genetic algorithm
    Xiujuan L.
    Liu W.
    Shanhong L.
    International Journal of Vehicle Structures and Systems, 2019, 11 (03) : 297 - 300
  • [10] Plastic Responses of Gilthead Seabream Sparus aurata to Wild and Aquaculture Pressured Environments
    Talijancic, Igor
    Zuzul, Iva
    Kiridzija, Viktorija
    Siljic, Jasna
    Pleadin, Jelka
    Grubisic, Leon
    Segvic-Bubic, Tanja
    FRONTIERS IN MARINE SCIENCE, 2021, 8