Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm

被引:0
|
作者
Ignacio Llorente
Ladislao Luna
机构
[1] Universidad de Cantabria,Departamento de Administración de Empresas, Facultad de Ciencias Económicas y Empresariales
来源
Aquaculture International | 2014年 / 22卷
关键词
Bioeconomics; Economic optimisation; Operational research; Particle swarm optimisation; Seabream;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this study is the economic optimisation of seabream farming through the determination of the production strategies that maximise the present operating profits of the cultivation process. The methodology applied is a particle swarm optimisation algorithm based on a bioeconomic model that simulates the process of seabream fattening. The biological submodel consists of three interrelated processes, stocking, growth, and mortality, and the economic submodel considers costs and revenues related to the production process. Application of the algorithm to seabream farming in Spain reveals that the activity is profitable and shows competitive differences associated with location. Additionally, the applications of the particle swarm optimisation algorithm could be of interest for the management of other important species, such as salmon (Salmo salar), catfish (Ictalurus punctatus), or tilapia (Oreochromis niloticus).
引用
收藏
页码:1837 / 1849
页数:12
相关论文
共 50 条
  • [1] Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm
    Llorente, Ignacio
    Luna, Ladislao
    AQUACULTURE INTERNATIONAL, 2014, 22 (06) : 1837 - 1849
  • [2] The feasibility of using gas mixture to stun seabream (Sparus aurata) before slaughtering in aquaculture production
    Roque, A.
    Gras, N.
    Rey-Planellas, S.
    Fatsini, E.
    Pallisera, J.
    Duncan, N.
    Munoz, I
    Velarde, A.
    Hernandez, M. D.
    AQUACULTURE, 2021, 545
  • [3] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    Jerald, J
    Asokan, P
    Prabaharan, G
    Saravanan, R
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2005, 25 (9-10): : 964 - 971
  • [4] Scheduling optimisation of flexible manufacturing systems using particle swarm optimisation algorithm
    J. Jerald
    P. Asokan
    G. Prabaharan
    R. Saravanan
    The International Journal of Advanced Manufacturing Technology, 2005, 25 : 964 - 971
  • [5] Parameters optimisation of a vehicle suspension system using a particle swarm optimisation algorithm
    Centeno Drehmer, Luis Roberto
    Paucar Casas, Walter Jesus
    Gomes, Herbert Martins
    VEHICLE SYSTEM DYNAMICS, 2015, 53 (04) : 449 - 474
  • [6] A Dynamic Neighbourhood Particle Swarm Optimisation Algorithm for Constrained Optimisation
    Li, Lily D.
    Yu, Xinghuo
    Li, Xiaodong
    Guo, William
    IECON 2011: 37TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011,
  • [7] AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
    Varna, Fevzi Tugrul
    Husbands, Phil
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [8] Improved strategy of particle swarm optimisation algorithm for reactive power optimisation
    Lu, Jin-gui
    Zhang, Li
    Yang, Hong
    Du, Jie
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2010, 2 (01) : 27 - 33
  • [9] Application of Improved Particle Swarm Optimisation Algorithm in Hull form Optimisation
    Zheng, Qiang
    Feng, Bai-Wei
    Liu, Zu-Yuan
    Chang, Hai-Chao
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [10] Optimisation of a fermentation process for butanol production by particle swarm optimisation (PSO)
    Mariano, Adriano Pinto
    Borba Costa, Caliane Bastos
    de Angelis, Dejanira de Franceschi
    Maugeri Filho, Francisco
    Pires Atala, Daniel Ibraim
    Wolf Maciel, Maria Regina
    Maciel Filho, Rubens
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2010, 85 (07) : 934 - 949