Interior Capacities of Condensers in Locally Compact Spaces

被引:0
作者
Natalia Zorii
机构
[1] Ukrainian Academy of Sciences,Institute of Mathematics
来源
Potential Analysis | 2011年 / 35卷
关键词
Minimal energy problems; Interior capacities of condensers; Interior equilibrium measures associated with a condenser; Consistent and perfect kernels; Completeness theorem for signed Radon measures; 31C15;
D O I
暂无
中图分类号
学科分类号
摘要
The study deals with the theory of interior capacities of condensers in a locally compact space, a condenser being treated here as a finite collection of arbitrary sets with sign + 1 or − 1 prescribed such that the closures of oppositely signed sets are mutually disjoint. We are motivated by the known fact that, in the noncompact case, the main minimum-problem of the theory is in general unsolvable, and this occurs even under very natural assumptions (e.g., for the Newtonian, Green, or Riesz kernels in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb R^n$\end{document} and closed condensers). Therefore it was particularly interesting to find statements of variational problems dual to the main minimum-problem (and hence providing new equivalent definitions to the capacity), but now always solvable (e.g., even for nonclosed condensers). For all positive definite kernels satisfying Fuglede’s condition of consistency between the strong and vague (= weak*) topologies, problems with the desired properties are posed and solved. Their solutions provide a natural generalization of the well-known notion of interior equilibrium measures associated with a set. We describe those solutions and the corresponding equilibrium constants, analyze their uniqueness and continuity, and point out their characteristic properties. Such results are new even for classical kernels in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb R^n$\end{document}, which is important in applications.
引用
收藏
页码:103 / 143
页数:40
相关论文
共 24 条
[1]  
Anderson CD(1985)The Newtonian capacity of a space condenser Indiana Univ. Math. J. 34 753-776
[2]  
Vamanamurthy MK(1967)The modulus of a plane condenser J. Math. Mech. 17 315-329
[3]  
Bagby T(1959)Dirichlet spaces Proc. Natl. Acad. Sci. U. S. A. 45 208-215
[4]  
Beurling A(2004)The condenser problem Potential Anal. 21 177-192
[5]  
Deny J(1945)Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels Bull. Soc. Math. Fr. 73 74-106
[6]  
Bliedtner J(1977)The condenser problem Ann. Probab. 5 82-86
[7]  
Musat M(1950)Les potentiels d’énergie finite Acta Math. 82 107-183
[8]  
Cartan H(1950)Sur la définition de l’énergie en théorie du potentiel Ann. Inst. Fourier Grenoble 2 83-99
[9]  
Chung KL(1958)Cartan’s balayage theory for hyperbolic Riemann surfaces Ann. Inst. Fourier 8 263-272
[10]  
Getoor RK(1935)Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions Comm. Sém. Math. Univ. Lund 3 1-118