Generalized Cartesian decomposition and numerical radius inequalities

被引:0
作者
Pintu Bhunia
Anirban Sen
Kallol Paul
机构
[1] Jadavpur University,Department of Mathematics
[2] Indian Institute of Science,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; 47A12; 47A30; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let T={λ∈C:∣λ∣=1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}} = \{ \lambda \in {\mathbb {C}}: \mid \lambda \mid = 1\}. $$\end{document} Every linear operator T on a complex Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} can be decomposed as T=T+λT∗2+iT-λT∗2i(λ∈T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T=\frac{T+\lambda T^*}{2}+ i \frac{T-\lambda T^*}{2i} \,\, \, (\lambda \in {\mathbb {T}}), \end{aligned}$$\end{document}designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decomposition we obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}},$$\end{document} then w(T)≥12T+λ+μ2T∗,for allλ,μ∈T.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w(T)\ge & {} \frac{1}{2} \left\| T+ \frac{\lambda +\mu }{2}T^* \right\| , \,\,\text {for all } \lambda ,\,\mu \in {\mathbb {T}}. \end{aligned}$$\end{document}This improves the existing bounds w(T)≥12‖T‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \frac{1}{2}\Vert T\Vert $$\end{document}, w(T)≥‖Re(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \Vert Re(T)\Vert $$\end{document}, w(T)≥‖Im(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \Vert Im(T)\Vert $$\end{document} and so w2(T)≥14‖T∗T+TT∗‖,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^2(T)\ge \frac{1}{4} \Vert T^*T+TT^*\Vert ,$$\end{document} where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:10
相关论文
共 50 条
  • [11] INNER PRODUCT INEQUALITIES THROUGHCARTESIAN DECOMPOSITION WITH APPLICATIONSTO NUMERICAL RADIUS INEQUALITIES
    Nourbakhsh, Saeedatossadat
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    [J]. OPERATORS AND MATRICES, 2024, 18 (01): : 69 - 81
  • [12] GENERALIZED NUMERICAL RADIUS INEQUALITIES FOR 2 x 2 OPERATOR MATRICES
    Bani-Domi, Watheq
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 31 - 38
  • [13] Generalized A-Numerical Radius of Operators and Related Inequalities
    Bhunia, Pintu
    Feki, Kais
    Paul, Kallol
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (06) : 3883 - 3907
  • [14] Generalized numerical radius inequalities of operators in Hilbert spaces
    Feki, Kais
    [J]. ADVANCES IN OPERATOR THEORY, 2021, 6 (01)
  • [15] Generalized numerical radius inequalities of operators in Hilbert spaces
    Kais Feki
    [J]. Advances in Operator Theory, 2021, 6
  • [16] EUCLIDEAN OPERATOR RADIUS AND NUMERICAL RADIUS INEQUALITIES
    Jana, Suvendu
    Bhunia, Pintu
    Paul, Kallol
    [J]. OPERATORS AND MATRICES, 2024, 18 (04): : 925 - 939
  • [17] Numerical radius inequalities for certain operator matrices
    Al-Dolat, Mohammed
    Kittaneh, Fuad
    [J]. JOURNAL OF ANALYSIS, 2024, 32 (5) : 2939 - 2951
  • [18] Applications of numerical radius inequalities
    Al-Boustanji, Anwar
    Audeh, Wasim
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03) : 1305 - 1312
  • [19] Weighted Inequalities For The Numerical Radius
    Sheybani, Shiva
    Sababheh, Mohammed
    Moradi, Hamid Reza
    [J]. VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (02) : 363 - 377
  • [20] Weighted Inequalities For The Numerical Radius
    Shiva Sheybani
    Mohammed Sababheh
    Hamid Reza Moradi
    [J]. Vietnam Journal of Mathematics, 2023, 51 : 363 - 377