Generalized Cartesian decomposition and numerical radius inequalities

被引:0
|
作者
Pintu Bhunia
Anirban Sen
Kallol Paul
机构
[1] Jadavpur University,Department of Mathematics
[2] Indian Institute of Science,Department of Mathematics
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Numerical radius; Usual operator norm; Bounded linear operator; Inequality; 47A12; 47A30; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let T={λ∈C:∣λ∣=1}.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}} = \{ \lambda \in {\mathbb {C}}: \mid \lambda \mid = 1\}. $$\end{document} Every linear operator T on a complex Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} can be decomposed as T=T+λT∗2+iT-λT∗2i(λ∈T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T=\frac{T+\lambda T^*}{2}+ i \frac{T-\lambda T^*}{2i} \,\, \, (\lambda \in {\mathbb {T}}), \end{aligned}$$\end{document}designated as the generalized Cartesian decomposition of T. Using the generalized Cartesian decomposition we obtain several lower and upper bounds for the numerical radius of bounded linear operators which refine the existing bounds. We prove that if T is a bounded linear operator on H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}},$$\end{document} then w(T)≥12T+λ+μ2T∗,for allλ,μ∈T.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w(T)\ge & {} \frac{1}{2} \left\| T+ \frac{\lambda +\mu }{2}T^* \right\| , \,\,\text {for all } \lambda ,\,\mu \in {\mathbb {T}}. \end{aligned}$$\end{document}This improves the existing bounds w(T)≥12‖T‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \frac{1}{2}\Vert T\Vert $$\end{document}, w(T)≥‖Re(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \Vert Re(T)\Vert $$\end{document}, w(T)≥‖Im(T)‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(T)\ge \Vert Im(T)\Vert $$\end{document} and so w2(T)≥14‖T∗T+TT∗‖,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w^2(T)\ge \frac{1}{4} \Vert T^*T+TT^*\Vert ,$$\end{document} where Re(T) and Im(T) denote the the real part and the imaginary part of T, respectively. Further, using a lower bound for the numerical radius of a bounded linear operator, we develop upper bounds for the numerical radius of the commutator of operators which generalize and improve on the existing ones.
引用
收藏
页码:887 / 897
页数:10
相关论文
共 50 条
  • [1] Generalized Cartesian decomposition and numerical radius inequalities
    Bhunia, Pintu
    Sen, Anirban
    Paul, Kallol
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) : 887 - 897
  • [2] NUMERICAL RADIUS INEQUALITIES ASSOCIATED WITH THE CARTESIAN DECOMPOSITION
    Kittaneh, Fuad
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (03): : 915 - 922
  • [3] Cartesian decomposition and numerical radius inequalities
    Kittaneh, Fuad
    Moslehian, Mohammad Sal
    Yamazaki, Takeaki
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 46 - 53
  • [4] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    Bhunia, P.
    Jana, S.
    Moslehian, M. S.
    Paul, K.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2023, 57 (01) : 18 - 28
  • [5] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    P. Bhunia
    S. Jana
    M. S. Moslehian
    K. Paul
    Functional Analysis and Its Applications, 2023, 57 : 18 - 28
  • [6] GENERALIZED NUMERICAL RADIUS AND RELATED INEQUALITIES
    Bottazzi, T.
    Conde, C.
    OPERATORS AND MATRICES, 2021, 15 (04): : 1289 - 1308
  • [7] Improved lower bounds for numerical radius via Cartesian decomposition
    Alrimawi, Fadi
    Abushaheen, Fuad A.
    Alkhateeb, Rami
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2024, 33 (02): : 169 - 175
  • [8] Generalized A-Numerical Radius of Operators and Related Inequalities
    Pintu Bhunia
    Kais Feki
    Kallol Paul
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 3883 - 3907
  • [9] Inequalities for Numerical Radius and Spectral Radius
    Al-Hawari, M.
    Barahmeh, Sa'ed M.
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2016, 5 (02) : 131 - 133
  • [10] INNER PRODUCT INEQUALITIES THROUGHCARTESIAN DECOMPOSITION WITH APPLICATIONSTO NUMERICAL RADIUS INEQUALITIES
    Nourbakhsh, Saeedatossadat
    Hassani, Mahmoud
    Omidvar, Mohsen Erfanian
    Moradi, Hamid Reza
    OPERATORS AND MATRICES, 2024, 18 (01): : 69 - 81