Quasi-Shadowing for Partially Hyperbolic Flows with a Local Product Structure

被引:0
作者
Lin Wang
机构
[1] Shanxi University of Finance and Economics,School of Applied Mathematics
来源
Journal of Dynamical and Control Systems | 2023年 / 29卷
关键词
Partial hyperbolicity; Quasi-Shadowing; Local product structure; Flow; Primary: 37C50; 37D30; Secondary: 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
Let a flow ϕt be partially hyperbolic on Λ. If Λ has a local product structure, then ϕt has the quasi-shadowing property on Λ in the following sense: for any 𝜖 > 0, there exists constant δ > 0 such that for any (δ,1)-pseudo orbit {xk,tk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{x_{k}, t_{k}\}_{k\in \mathbb {Z}}$\end{document} of ϕt with 1 ≤ tk ≤ 2 for all k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\in \mathbb {Z}$\end{document}, there exist a sequence of points {yk}k∈ℤ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{y_{k}\}_{k\in \mathbb {Z}}$\end{document} and a reparametrization α∈Rep(ℝ,𝜖)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in Rep(\mathbb {R},\epsilon )$\end{document} such that ϕα(t)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−Σk(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-{\Sigma }_{k}}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(Σk+1)−α(Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha ({\Sigma }_{k+1})-\alpha ({\Sigma }_{k})}(y_{k})$\end{document} for k ≥ 0 t ≥ 0 and ϕα(t)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (t)-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} trace ϕt−(−Σk)(xk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{t-(-{\Sigma }_{k})}(x_{k})$\end{document} in which yk+ 1 lies in the local center leaf of ϕα(−Σk+1)−α(−Σk)(yk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi _{\alpha (-{\Sigma }_{k+1})-\alpha (-{\Sigma }_{k})}(y_{k})$\end{document} for k < 0, t < 0.
引用
收藏
页码:95 / 110
页数:15
相关论文
共 22 条
[1]  
Bowen R(1972)Periodic orbits for hyperbolic flows Amer. J. Math. 94 1-30
[2]  
Bonatti C(2015)Partially hyperbolic diffeomorphisms with uniformly compact center foliations: the quotient dynamics Ergod. Theory Dyn. Syst. 36 1067-1105
[3]  
Bohnet D(1977)’Hyperbolicity and chain recurrence’ J. Differ. Equ. 26 27-36
[4]  
Franke JE(2018)A shadowing lemma for quasi-hyperbolic strings of flows J. Differ. Equ. 264 1-29
[5]  
Selgrade JF(2015)Quasi-shadowing for partially hyperbolic diffeomorphisms Ergodic Theory Dynam. Syst. 35 412-430
[6]  
Han B(2013)Partial hyperbolicity and central shadowing Discret. Contin. Dyn. Syst. 33 2901-2909
[7]  
Wen X(2020)Quasi-shadowing for partially hyperbolic flows Discret. Contin. Dyn. Syst. 40 2089-2103
[8]  
Hu H(1997)Shadowing in structurally stable flows J. Differ. Equ. 140 238-265
[9]  
Zhou Y(1967)Differentiable dynamical systems Bull. Amer. Mufh. Sot. (N.S.) 73 747-817
[10]  
Zhu Y(2016)Hyperbolic periodic points for chain hyperbolic homoclinic classes Discret. Contin. Dyn. Syst. 36 3911-3925