共 32 条
[21]
On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al.
[J].
The Ramanujan Journal,
2025, 66 (2)
[22]
The divisibility of the class number of the imaginary quadratic fields Q(1-2mk)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {Q}}(\sqrt{1-2m^k})$$\end{document}
[J].
The Ramanujan Journal,
2024, 64 (3)
:991-1002
[23]
On integral graphs which belong to the class\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\overline {\alpha K_{a,a} \cup \beta {\rm K}_{b,b} } $$
\end{document}
[J].
Journal of Applied Mathematics and Computing,
2006, 20 (1-2)
:61-74
[24]
On integral graphs which belong to the class\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\overline {\alpha K_a \cup \beta K_b } $$
\end{document}
[J].
Journal of Applied Mathematics and Computing,
2004, 14 (1-2)
:39-49
[25]
On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$cx^2+p^{2m}=4y^n$$\end{document}
[J].
Results in Mathematics,
2021, 76 (2)
[26]
The equation x4+2ny4=z4\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^4+2^ny^4=z^4$$\end{document} in algebraic number fields
[J].
Acta Mathematica Hungarica,
2022, 167 (1)
:309-331
[27]
On the Diophantine equation ∑j=1kjPjp=Pnq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sum_{j=1}^{k}jP_j^p=P_n^q$$\end{document}
[J].
Acta Mathematica Hungarica,
2020, 162 (2)
:647-676
[28]
On the Diophantine equation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\dfrac{ax^{n+2l}+c}{abt^{2}x^{n}+c}{\displaystyle\frac{ax^{n+2l}+c}{abt^{2}x^{n}+c}}=by^{2}$
\end{document}
[J].
Acta Mathematica Hungarica,
2011, 133 (4)
:342-358
[29]
On the Diophantine Equation dx2+p2aq2b=4yp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$dx^2+p^{2a}q^{2b}=4y^p$$\end{document}
[J].
Results in Mathematics,
2022, 77 (1)
[30]
On 1w+1x+1y+1z=12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{ 2} $\end{document} and some of its generalizations
[J].
Journal of Inequalities and Applications,
2018 (1)