On the Diophantine equation ∏i≤m(diy+qi)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \prod \nolimits _{i \le m}(d_iy + q_{i}) = f(x)$$\end{document}

被引:0
作者
Raghavendran Srikanth
Sivanarayanapandian Subburam
机构
[1] SASTRA Deemed to be University,TATA Realty
关键词
Diophantine equation; Monic polynomial; Arithmetical function; 11D41; 11D45;
D O I
10.1007/s13370-018-0603-3
中图分类号
学科分类号
摘要
In this paper, we extend the result of Subburam (Acta Math Hungar 146:40–46, 2015).
引用
收藏
页码:1091 / 1095
页数:4
相关论文
共 32 条
[21]   On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al. [J].
P. K. Bhoi ;
S. S. Rout ;
G. K. Panda .
The Ramanujan Journal, 2025, 66 (2)
[22]   The divisibility of the class number of the imaginary quadratic fields Q(1-2mk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}(\sqrt{1-2m^k})$$\end{document} [J].
S. Krishnamoorthy ;
R. Muneeswaran .
The Ramanujan Journal, 2024, 64 (3) :991-1002
[25]   On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cx^2+p^{2m}=4y^n$$\end{document} [J].
K. Chakraborty ;
A. Hoque ;
K. Srinivas .
Results in Mathematics, 2021, 76 (2)
[27]   On the Diophantine equation ∑j=1kjPjp=Pnq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{j=1}^{k}jP_j^p=P_n^q$$\end{document} [J].
E. Tchammou ;
A. Togbé .
Acta Mathematica Hungarica, 2020, 162 (2) :647-676
[28]   On the Diophantine equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\dfrac{ax^{n+2l}+c}{abt^{2}x^{n}+c}{\displaystyle\frac{ax^{n+2l}+c}{abt^{2}x^{n}+c}}=by^{2}$ \end{document} [J].
Jiagui Luo ;
Pingzhi Yuan .
Acta Mathematica Hungarica, 2011, 133 (4) :342-358
[29]   On the Diophantine Equation dx2+p2aq2b=4yp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx^2+p^{2a}q^{2b}=4y^p$$\end{document} [J].
Kalyan Chakraborty ;
Azizul Hoque .
Results in Mathematics, 2022, 77 (1)