共 32 条
- [11] Diophantine S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{S} $$\end{document}-quadruples with two primes which are twin Acta Mathematica Hungarica, 2019, 159 (2) : 589 - 602
- [12] A family of elliptic curves with rank ≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 5$$\end{document} Periodica Mathematica Hungarica, 2015, 71 (2) : 243 - 249
- [13] On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document} The Ramanujan Journal, 2020, 53 (2) : 389 - 397
- [14] Many solutions to the S-unit equation a+1=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a + 1 = c$$\end{document} Acta Mathematica Hungarica, 2020, 160 (1) : 153 - 160
- [15] On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} Periodica Mathematica Hungarica, 2022, 85 (2) : 369 - 379
- [16] On the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document} Periodica Mathematica Hungarica, 2019, 79 (2) : 210 - 217
- [17] On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials Periodica Mathematica Hungarica, 2019, 79 (1) : 25 - 31
- [18] Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$wx^{2}+1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (2) : 165 - 178
- [19] On solutions of the simultaneous Pell equations x2-a2-1y2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x^{2}-\left( a^{2}-1\right) y^{2}=1$$\end{document} and y2-pz2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{2}-pz^{2}=1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (1) : 130 - 136
- [20] The equation y2=x6+x2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^2=x^6+x^2+1$$\end{document} revisited Indian Journal of Pure and Applied Mathematics, 2023, 54 (3) : 760 - 765