On the Diophantine equation ∏i≤m(diy+qi)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \prod \nolimits _{i \le m}(d_iy + q_{i}) = f(x)$$\end{document}

被引:0
作者
Raghavendran Srikanth
Sivanarayanapandian Subburam
机构
[1] SASTRA Deemed to be University,TATA Realty
关键词
Diophantine equation; Monic polynomial; Arithmetical function; 11D41; 11D45;
D O I
10.1007/s13370-018-0603-3
中图分类号
学科分类号
摘要
In this paper, we extend the result of Subburam (Acta Math Hungar 146:40–46, 2015).
引用
收藏
页码:1091 / 1095
页数:4
相关论文
共 32 条
[13]   Many solutions to the S-unit equation a+1=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a + 1 = c$$\end{document} [J].
J. Ha ;
K. Soundararajan .
Acta Mathematica Hungarica, 2020, 160 (1) :153-160
[14]   On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document} [J].
Nejib Ghanmi ;
Fadwa S. Abu Muriefah .
The Ramanujan Journal, 2020, 53 (2) :389-397
[15]   On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} [J].
Yong Zhang ;
Qiongzhi Tang .
Periodica Mathematica Hungarica, 2022, 85 (2) :369-379
[17]   On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials [J].
Yong Zhang ;
Arman Shamsi Zargar .
Periodica Mathematica Hungarica, 2019, 79 (1) :25-31
[18]   Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$wx^{2}+1$$\end{document} [J].
Refik Keskin ;
Ümmügülsüm Öğüt .
Periodica Mathematica Hungarica, 2016, 73 (2) :165-178