共 32 条
[11]
On the Diophantine equation x2+bm=cn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{x^2+b^m=c^n}$$\end{document} with a2+b4=c2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{a^2+b^4=c^2}$$\end{document}
[J].
Indian Journal of Pure and Applied Mathematics,
2022, 53 (1)
:162-169
[12]
On the variant Qn!=Px\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q\left(n!\right)=P\left(x\right)$$\end{document} of the Brocard–Ramanujan Diophantine equation
[J].
The Ramanujan Journal,
2024, 65 (4)
:1791-1798
[13]
Many solutions to the S-unit equation a+1=c\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$a + 1 = c$$\end{document}
[J].
Acta Mathematica Hungarica,
2020, 160 (1)
:153-160
[14]
On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Cx^{2}+D=2y^{q}$$\end{document}
[J].
The Ramanujan Journal,
2020, 53 (2)
:389-397
[15]
On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document}
[J].
Periodica Mathematica Hungarica,
2022, 85 (2)
:369-379
[16]
On the Diophantine equation Ln-Lm=2·3a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{n}-L_{m}=2\cdot 3^{a}$$\end{document}
[J].
Periodica Mathematica Hungarica,
2019, 79 (2)
:210-217
[17]
On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials
[J].
Periodica Mathematica Hungarica,
2019, 79 (1)
:25-31
[18]
Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$wx^{2}+1$$\end{document}
[J].
Periodica Mathematica Hungarica,
2016, 73 (2)
:165-178
[19]
On solutions of the simultaneous Pell equations x2-a2-1y2=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ x^{2}-\left( a^{2}-1\right) y^{2}=1$$\end{document} and y2-pz2=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$y^{2}-pz^{2}=1$$\end{document}
[J].
Periodica Mathematica Hungarica,
2016, 73 (1)
:130-136
[20]
The equation y2=x6+x2+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$y^2=x^6+x^2+1$$\end{document} revisited
[J].
Indian Journal of Pure and Applied Mathematics,
2023, 54 (3)
:760-765