共 32 条
[1]
On the Diophantine equation yp=f(x)g(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${y^{p} = \frac{f(x)}{g(x)}}$$\end{document}
[J].
Acta Mathematica Hungarica,
2019, 157 (1)
:1-9
[2]
On b\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ b$$\end{document}-concatenations of two k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ k$$\end{document}-generalized Fibonacci numbers
[J].
Acta Mathematica Hungarica,
2025, 175 (2)
:452-471
[3]
On the diophantine equation y2=∏i≤8(x+ki)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{y^{2} = \prod _{i \le 8}(x + k_i)}$$\end{document}
[J].
Proceedings - Mathematical Sciences,
2018, 128 (4)
[4]
The diophantine equation (y+q1)(y+q2)⋯(y+qm)=f(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${(y + q_{1})(y + q_{2})\cdots(y + q_{m}) = f(x)}$$\end{document}
[J].
Acta Mathematica Hungarica,
2015, 146 (1)
:40-46
[5]
A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f(x)f(y)=f(z^2)$$\end{document}
[J].
Periodica Mathematica Hungarica,
2015, 70 (2)
:209-215
[6]
On the Diophantine equation x2+C=yn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x^2+C=y^n$$\end{document}
[J].
Indian Journal of Pure and Applied Mathematics,
2024, 55 (1)
:69-77
[7]
A Pellian Equation with Primes and Applications to D(-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D(-1)$$\end{document}-Quadruples
[J].
Bulletin of the Malaysian Mathematical Sciences Society,
2019, 42 (5)
:2915-2926
[8]
On solutions of the diophantine equation Fn-Fm=3a\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{F_{n}-F_{m}=3^{a}}$$\end{document}
[J].
Proceedings - Mathematical Sciences,
2019, 129 (5)
[9]
Diophantine S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{S} $$\end{document}-quadruples with two primes which are twin
[J].
Acta Mathematica Hungarica,
2019, 159 (2)
:589-602
[10]
A family of elliptic curves with rank ≥5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ge 5$$\end{document}
[J].
Periodica Mathematica Hungarica,
2015, 71 (2)
:243-249